Bibliography

A pdf version of this list can also be found Downloadhere (PDF, 794 KB).

1. Albarède, F. The geochemical behaviour of selected elements. In: Geochemistry. An Introduction. Cambridge Univ. Press, Cambridge, UK, pp 191-206 (2003)

2. Klein, C. & Dutrow, B. Crystal chemistry and systematic descriptions of native elements, sulfides, and sulfosalts. In: Manual of mineral science. John Wiley & Sons, Inc., New York, USA, pp 331-367 (2007)

3. Klein, C. & Dutrow, B. Crystal chemistry and systematic descriptions of oxides, hydroxides, and halides. In: Manual of mineral science. John Wiley & Sons, Inc., New York, USA, pp 368-398 (2007)

4. Klein, C. & Dutrow, B. Crystal chemistry and systematic descriptions of carbonates, nitrates, borates, sulfates, chromates, tungstates, molybdates, phosphates, arsenates, and vanadates. In: Manual of mineral science. John Wiley & Sons, Inc., New York, USA, pp 399-433 (2007)

5. Kohnlein, W. A model of the terrestrial ionosphere in the altitude interval 50-4000 km. 1. Atomic ions (H+, He+, N+, O+). Earth Moon Planets 45, 53-100 (1989)

6. Kohnlein, W. A model of the terrestrial ionosphere in the altitude interval 50-4000 km. 2. Molecular ions (N2+, NO+, O2+) and electron density. Earth Moon Planets 47, 109-163 (1989)

7. Smith, D. & Spanel, P. Ions in the terrestrial atmosphere and in interstellar clouds. Mass Spectrom. Rev. 14, 255-278 (1995)

8. Harrison, R.G. & Tammet, H. Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci. Rev. 137, 107-118 (2008)

9. Smith, D. The ion chemistry of interstellar clouds. Chem. Rev. 92, 1473-1485 (1992)

10. Bochsler, P. Minor ions in the solar wind. Astron. Astrophys. Rev. 14, 1-40 (2007)

11. Petrie, S. & Bohme, D.K. Ions in space. Mass Spectrom. Rev. 26, 258-280 (2007)

12. Takahashi, T. Water electrolysis. In: Solar-hydrogen energy systems. Ohta, T., Ed. Pergamon Press, New York, USA, pp 35-58 (1979)

13. Sun, P., Laforge, F.O. & Mirkin, M.V. Scanning electrochemical microscopy in the 21st century. Phys. Chem. Chem. Phys. 9, 802-823 (2007)

14. Moussallem, I., Jorissen, J., Kunz, U., Pinnow, S. & Turek, T. Chlor-alkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects. J. Appl. Electrochem. 38, 1177-1194 (2008)

15. Beck, F. & Ruetschi, P. Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45, 2467-2482 (2000)

16. Brodd, R.J., Bullock, K.R., Leising, R.A., Middaugh, R.L., Miller, J.R. & Takeuchi, E. Batteries, 1977 to 2002. J. Electrochem. Soc. 151, K1-K11 (2004)

17. Patil, A., Patil, V., Shin, D.W., Choi, J.W., Paik, D.S. & Yoon, S.J. Issues and challenges facing rechargeable thin film lithium batteries. Materials Res. Bull. 43, 1913-1942 (2008)

18. Wei, B.Q., D'Arcy-Gall, J., Ajayan, P.M. & Ramanath, G. Tailoring structure and electrical properties of carbon nanotubes using kilo-electron-volt ions. Appl. Phys. Lett. 83, 3581-3583 (2003)

19. Braga, D., Maini, L., Polito, M. & Grepioni, F. Hydrogen bonding interactions between ions: A powerful tool in molecular crystal engineering. In: Supramolecular assembly via hydrogen bonds II. Structure and bonding. Volume 111. Springer-Verlag, Berlin, Germany, pp 1-32 (2004)

20. Krasheninnikov, A.V. & Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. Nature Mat. 6, 723-733 (2007)

21. Sneen, R.A. Substitution at saturated carbon-atom. 17. Organic ion pairs as intermediates in nucleophilic substitution and elimination-reactions. Acc. Chem. Res. 6, 46-53 (1973)

22. El Abedin, S.Z. & Endres, F. Ionic liquids: The link to high-temperature molten salts? Acc. Chem. Res. 40, 1106-1113 (2007)

23. Hu, Z.H. & Margulis, C.J. Room-temperature ionic liquids: Slow dynamics, viscosity, and the red edge effect. Acc. Chem. Res. 40, 1097-1105 (2007)

24. Hardacre, C., Holbrey, J.D., Nieuwenhuyzen, M. & Youngs, T.G.A. Structure and solvation in ionic liquids. Acc. Chem. Res. 40, 1146-1155 (2007)

25. Joglekar, H.G., Rahman, I. & Kulkarni, B.D. The path ahead for ionic liquids. Chem. Engineer. Tech. 30, 819-828 (2007)

26. Plechkova, N.V. & Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123-150 (2008)

27. Weingärtner, H. Understanding ionic liquids at the molecular level: Facts, problems, and controversies. Angew. Chem. Int. Ed. 47, 654-670 (2008)

28. Pregel, M.J., Dunn, E.J., Nagelkerke, R., Thatcher, G.R.J. & Buncel, E. Alkali-metal ion catalysis and inhibition in nucleophilic displacement reactions of phosphorus-, sulfur- and carbon-based esters. Chem. Soc. Rev. 24, 449-455 (1995)

29. Bohme, D.K. & Schwarz, H. Gas-phase catalysis by atomic and cluster metal ions: The ultimate single-site catalysts. Angew. Chem. Int. Ed. 44, 2336-2354 (2005)

30. Gelbard, G. Organic synthesis by catalysis with ion-exchange resins. Industr. Engineer. Chem. Res. 44, 8468-8498 (2005)

31. Nahar, S. & Tajmirriahi, H.A. Do metal ions alter the protein secondary structure of a light-harvesting complex of thylakoid membranes? J. Inorg. Biochem. 58, 223-234 (1995)

32. Bregadze, V.G. Metal ion interactions with DNA: Considerations on structure, stability, and effects from metal ion binding. In: Metal ions in biological systems. Volume 32. Marcel Dekker, New York, USA, pp 419-451 (1996)

33. Jiang, M., Shen, T., Xu, H.B. & Liu, C.L. The influences of metal ions on protein folding, recognition, self-assembly and biological functions. Prog. Chem. 14, 263-272 (2002)

34. Mason, P.E., Neilson, G.W., Dempsey, C.E., Barnes, A.C. & Cruickshank, J.M. The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution. Proc. Natl. Acad. Sci. USA 100, 4557-4561 (2003)

35. Andrushchenko, V., Tsankov, D. & Wieser, H. Vibrational circular dichroism spectroscopy and the effects of metal ions on DNA structure. J. Mol. Struct. 661, 541-560 (2003)

36. Banci, L., Bertini, I., Cramaro, F., del Conte, R. & Viezzoli, M.S. Solution structure of Apo-Cu,Zn superoxide dismutase: Role of metal ions in protein folding. Biochemistry 42, 9543-9553 (2003)

37. Sissi, C., Marangon, E., Chemello, A., Noble, C.G., Maxwell, A. & Palumbo, M. The effects of metal ions on the structure and stability of the DNA gyrase B protein. J. Mol. Biol. 353, 1152-1160 (2005)

38. Woodson, S.A. Metal ions and RNA folding: A highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 9, 104-109 (2005)

39. Bushmarina, N.A., Blanchet, C.E., Vernier, G. & Forge, V. Cofactor effects on the protein folding reaction: Acceleration of alpha-lactalbumin refolding by metal ions. Prot. Sci. 15, 659-671 (2006)

40. Sharma, S.K., Goloubinoff, P. & Christen, P. Heavy metal ions are potent inhibitors of protein folding. Biochem. Biophys. Res. Comm. 372, 341-345 (2008)

41. Draper, D.E. RNA folding: Thermodynamic and molecular descriptions of the roles of ions. Biophys. J. 95, 5489-5495 (2008)

42. Siuzdak, G., Ichikawa, Y., Caulfield, T.J., Munoz, B., Wong, C.H. & Nicolaou, K.C. Evidence of Ca2+-dependent carbohydrate association through ion spray mass spectrometry. J. Am. Chem. Soc. 115, 2877-2881 (1993)

43. Fried, M.G. & Stickle, D.F. Ion-exchange reactions of proteins during DNA binding. Eur. J. Biochem. 218, 469-475 (1993)

44. Arnott, S., Bian, W., Chandrasekaran, R. & Mains, B.R. Lessons for today and tomorrow from yesterday - the structure of alginic acid. Fibre Diffr. Rev. 9, 44-51 (2000)

45. Saecker, R.M. & Record Jr., M.T. Protein surface salt bridges and paths for DNA wrapping. Curr. Opin. Struct. Biol. 12, 311-319 (2002)

46. Tan, Z.J. & Chen, S.J. Ion-mediated nucleic acid helix-helix interactions. Biophys. J. 91, 518-536 (2006)

47. Williams, P.A. Molecular interactions of plant and algal polysaccharides. Struct. Chem. 20, 299-308 (2009)

48. Endo, M. Calcium ion as a second messenger with special reference to excitation-contraction coupling. J. Pharm. Sci. 100, 519-524 (2006)

49. Orlov, S.N. & Hamet, P. Intracellular monovalent ions as second messengers. J. Memb. Biol. 210, 161-172 (2006)

50. Strater, N., Lipscomb, W.N., Klabunde, T. & Krebs, B. Two-metal ion catalysis in enzymatic acyl- and phosphoryl-transfer reactions. Angew. Chem. Int. Ed. 35, 2024-2055 (1996)

51. Yang, W., Lee, J.Y & Nowotny, M. Making and breaking nucleic acids: Two-Mg2+-ion catalysis and substrate specificity. Mol. Cell 22, 4-13 (2006)

52. Sigel, R.K.O. & Pyle, A.M. Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chem. Rev. 107, 97-113 (2007)

53. Scott, W.G. RNA structure, metal ions, and catalysis. Curr. Opin. Chem. Biol. 3, 705-709 (1999)

54. Hanna, R. & Doudna, J.A. Metal ions in ribozyme folding and catalysis. Curr. Opin. Chem. Biol. 4, 166-170 (2000)

55. Stahley, M.R. & Strobel, S.A. RNA splicing: Group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis. Curr. Opin. Struct. Biol. 16, 319-326 (2006)

56. Guyton, A.C. & Hall, J.E. Textbook of medicinal physiology. Edition 11. Elsevier, Oxford, UK (2005)

57. Mann, S. Biomineralization. Principles and concepts in bioinorganic materials chemistry. Edition 1. Oxford Univ. Press, Oxford, UK (2001)

58. Atwood, C.S., Huang, X.D., Moir, R.D., Tanzi, R.E. & Bush, A.I. Role of free radicals and metal ions in the pathogenesis of Alzheimer's disease. In: Metal ions in biological systems. Volume 36. Marcel Dekker, New York, USA, pp 309-364 (1999)

59. Lehmann, S. Metal ions and prion diseases. Curr. Opin. Struct. Biol. 6, 187-192 (2002)

60. Martin, S.F. T-lymphocyte-mediated immune responses to chemical haptens and metal ions: Implications for allergic and autoimmune disease. Int. Arch. Allergy Immunol. 134, 186-198 (2004)

61. Greco, C. & Wolden, S. Current status of radiotherapy with proton and light ion beams. Cancer 109, 1227-1238 (2007)

62. Schulz-Ertner, D. & Tsujii, H. Particle radiation therapy using proton and heavier ion beams. J. Clin. Oncol. 25, 953-964 (2007)

63. Thompson, K.H. & Orvig, C. Boon and bane of metal ions in medicine. Science 300, 936-939 (2003)

64. Sigel, A. & Sigel, H. Metal ions in biological systems: Metal complexes in tumor diagnosis and as anticancer agents. Volume 42. CRC Press, Boca Raton, Florida, USA (2004)

65. Wells, A.F. The structures of crystals. Solid State Phys.: Adv. Res. App. 7, 425-503 (1958)

66. Pauling, L. The nature of the chemical bond. Edition 3. Cornell University Press, Ithaca NY, USA (1960)

67. Tosi, M.P. Cohesion of ionic solids in the Born model. Solid State Phys.: Adv. Res. App. 16, 1-120 (1964)

68. Sirdeshmukh, D.B., Sirdeshmukh, L. & Subhadra, K.G. Alkali halides. A handbook of physical properties. Springer-Verlag: Berlin, Heidelberg, New York (2001)

69. Ostwald, W. Studien zur Kontaktelektrizität. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 1, 583-610 (1887)

70. Kenrick, F.B. Die Potentialsprünge zwischen Gasen und Flüssigkeiten. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 19, 625-656 (1896)

71. Ostwald, W. Über die absoluten Potentiale der Metalle nebst Bemerkungen über Normalelektroden. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 35, 333-339 (1900)

72. Wilsmore, N.T.M. & Ostwald, W. Über Elektrodenpotentiale und absolute Potentiale. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 36, 91-98 (1901)

73. Billitzer, J. Zur Theorie der kapillarelektrischen Erscheinungen. I. Versuche mit Tropfelektroden. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 48, 513-548 (1904)

74. Billitzer, J. Zur Theorie der kapillarelektrischen Erscheinungen. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 51, 167-192 (1905)

75. Goodwin, H.M. On Billitzer's method for determining absolute potential differences. Phys. Rev. 21, 129-146 (1905)

76. Palmaer, W. Über das absolute Potential der Kalomelelektrode. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 59, 129-191 (1907)

77. Ewell, A.W. Electrostatic measurement of electrode potentials. Phys. Rev. 6, 271-282 (1915)

78. MacInnes, D.A. The activities of the ions of strong electrolytes. J. Am. Chem. Soc. 41, 1086-1092 (1919)

79. Born, M. Die Elektronenaffinität der Halogenatome. Ber. dtsch. physik. Ges. 21, 679-685 (1919)

80. Haber, F. Betrachtungen zur Theorie der Wärmetönung. Ber. dtsch. physik. Ges. 21, 750-768 (1919)

81. Fajans, K. Die Elektronenaffinität der Halogenatome und die Ionisierungsenergie der Halogenwasserstoffe. Ber. dtsch. physik. Ges. 21, 714-722 (1919)

82. Fajans, K. Bemerkungen zu meiner Arbeit: Über Hydrationswärmen gasförmiger Atomionen. Ber. dtsch. physik. Ges. 21, 709-713 (1919)

83. Fajans, K. Über Hydrationswärmen gasförmiger Atomionen. Ber. dtsch. physik. Ges. 21, 549-558 (1919)

84. Born, M. Volumen und Hydrationswärme der Ionen. Z. Phys. 1, 45-48 (1920)

85. Conway, B.E. Electrolyte solutions: Solvation and structural aspects. Ann. Rev. Phys. Chem. 17, 481-528 (1966)

86. Enderby, J.E. & Neilson, G.W. The structure of electrolyte solutions. Rep. Prog. Phys. 44, 593-653 (1981)

87. Collins, K.D. & Washabaugh, M.W. The Hofmeister effect and the behavior of water at interfaces. Quart. Rev. Biophys. 18, 323-422 (1985)

88. Ohtaki, H. & Radnai, T. Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157-1204 (1993)

89. Sacco, A. Structure and dynamics of electrolyte solutions. A NMR relaxation approach. Chem. Soc. Rev. 23, 129-136 (1994)

90. Enderby, J.E. Ion solvation via neutron scattering. Chem. Soc. Rev. 24, 159-168 (1995)

91. Lisy, J.M. Spectroscopy and structure of solvated alkali-metal ions. Int. Rev. Phys. Chem. 16, 267-289 (1997)

92. Helm, L. & Merbach, A.E. Water exchange on metal ions: experiments and simulations. Coord. Chem. Rev. 187, 151-181 (1999)

93. Ohtaki, H. Ionic solvation in aqueous and nonaqueous solutions. Monatshefte f. Chemie 132, 1237-1268 (2001)

94. Rasaiah, J.C. & Lynden-Bell, R.M. Computer simulation studies of the structure and dynamics of ions and non-polar solutes in water. Phil. Trans. R. Soc. Lond. A 359, 1545-1574 (2001)

95. Krienke, H., Fischer, R. & Barthel, J. Ion solvation in nonaqueous solvents on the Born-Oppenheimer level. J. Mol. Liq. 98-99, 329-354 (2002)

96. Erras-Hanauer, H., Clark, T. & van Eldik, R. Molecular orbital and DFT studies on water exchange mechanisms of metal ions. Coord. Chem. Rev. 238, 233-253 (2003)

97. Vinogradov, E.V., Smirnov, P.R. & Trostin, V.N. Structure of hydrated complexes formed by metal ions of Groups I-III of the Periodic Table in aqueous electrolyte solutions under ambient conditions. Russ. Chem. Bull. 52, 1253-1271 (2003)

98. Fawcett, W.R. Liquids, solutions and interfaces. Oxford Univ. Press, Oxford, UK (2004)

99. Kunz, W., Lo Nostro, P. & Ninham, B.W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid. Interface Sci. 9, 1-18 (2004)

100. Holovko, M., Druchok, M. & Bryk, T. Computer modelling of hydration structure of highly charged ions and cationic hydrolysis effects. Curr. Opin. Coll. Int. Sci. 9, 64-66 (2004)

101. Meot-Ner, M. The ionic hydrogen bond. Chem. Rev. 105, 213-284 (2005)

102. Rode, B.M., Schwenk, C.F., Hofer, T.S. & Randolf, B.R. Coordination and ligand exchange dynamics of solvated metal ions. Coord. Chem. Rev. 249, 2993-3006 (2005)

103. Rode, B.M. & Hofer, T.S. How to access structure and dynamics of solutions: The capabilities of computational methods. Pure Appl. Chem. 78, 525-539 (2006)

104. Soper, A.K. & Weckström, K. Ion solvation and water structure in potassium halide aqueous solutions. Biophys. Chem. 124, 180-191 (2006)

105. Ansell, S., Barnes, A.C., Mason, P.E., Neilson, G.W. & Ramos, S. X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions. Biophys. Chem. 124, 171-179 (2006)

106. Petersen, P.B. & Saykally, R.J. On the nature of ions at the liquid water surface. Annu. Rev. Phys. Chem. 57, 333-364 (2006)

107. Burnham, C.J., Petersen, M.K., Day, T.J.F., Iyengar, S.S. & Voth, G.A. The properties of ion-water clusters. II. Solvation structures of Na+, Cl- and H+ clusters as a function of temperature. J. Chem. Phys. 124, 024327/1-024327/9 (2006)

108. McLain, S.E., Imberti, S., Soper, A.K., Botti, A., Bruni, F. & Ricci, M.A. Structure of 2 molar NaOH in aqueous solution from neutron diffraction and empirical potential structure refinement. Phys. Rev. B 74, 094201/1-094201/8 (2006)

109. Marcus, Y. Effects of ions on the structure of water: Structure making and breaking. Chem. Rev. 109, 1346-1370 (2009)

110. Maroncelli, M. The dynamics of solvation in polar liquids. J. Mol. Liq. 57, 1-37 (1993)

111. Jenkins, H.D.B. & Marcus, Y. Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695-2724 (1995)

112. Dufreche, J.F., Bernard, O., Durand-Vidal, S. & Turq, P. Analytical theories of transport in concentrated electrolyte solutions from the MSA. J. Phys. Chem. B 109, 9873-9884 (2005)

113. Debye, P., Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Z. 24, 185-206 (1923)

114. The theory of concentrated, aqueous solutions of strong electrolytes. Phys. Z. 26, 93-147 (1925)

115. Scatchard, G. & Epstein, L.F. The calculation of the thermodynamic properties and the association of electrolyte solutions. Chem. Rev. 30, 211-226 (1942)

116. Scatchard, G. Osmotic coefficients and activity coefficients in mixed electrolyte solutions. J. Am. Chem. Soc. 83, 2636-2642 (1961)

117. Scatchard, G. Solutions of electrolytes. Ann. Rev. Phys. Chem. 14, 161-176 (1963)

118. McCall, D.W. & Douglas, D.C. The effect of ions on the self-diffusion of water. I. Concentration dependence. J. Phys. Chem. 69, 2001-2011 (1965)

119. Bell, G.M. & Rangecroft, P.D. Theory of surface tension for a 2-1 electrolyte solution. Trans. Faraday Soc. 67, 649-659 (1971)

120. Pitzer, K.S. Electrolyte theory. Improvements since Debye and Hückel. Acc. Chem. Res. 10, 371-377 (1977)

121. Pitzer, K.S. Characteristics of very concentrated aqueous solutions. Phys. Chem. Earth 13-14, 249-272 (1981)

122. Parkhurst, D.L. Ion-association models and mean activity coefficients of various salts. ACS Symposium Series 416, 30-43 (1990)

123. Wolery, T.J. & Jackson, K.J. Activity coefficients in aqueous salt solutions: Hydration theory equations. ACS Symposium Series 416, 16-29 (1990)

124. Covington, A.K. & Pethybridge, A.D. Electrolyte solutions. Ann. Rep. Prog. Chem. A 74, 5-21 (1977)

125. Friedman, H.L. Electrolyte solutions at equilibrium. Ann. Rev. Phys. Chem. 32, 179-204 (1981)

126. Bates, R.G., Dickson, A.G., Gratzl, M., Hrabeczypall, A., Lindner, E. & Pungor, E. Determination of mean activity coefficients with ion-selective electrodes. Anal. Chem. 55, 1275-1280 (1983)

127. Kuznetsova, E.M. Basic directions in the theory of activity of strong electrolyte solutions. Russ. J. Phys. Chem. 76, 866-880 (2002)

128. Boström, M., Kunz, W. & Ninham, B.W. Hofmeister effects in surface tension of aqueous electrolyte solution. Langmuir 21, 2619-2623 (2005)

129. Marcus, Y. & Hefter, G. Ion pairing. Chem. Rev. 106, 4585-4621 (2006)

130. Du, H., Rasaiah, J.C. & Miller, J.D. Structural and dynamic properties of concentrated alkali halide solutions: A molecular dynamics simulation study. J. Phys. Chem. B 111, 209-217 (2007)

131. Buchner, R. What can be learnt from dielectric relaxation spectroscopy about ion solvation and association? Pure Appl. Chem. 80, 1239-1252 (2008)

132. Buchner, R. & Hefter, G. Interactions and dynamics in electrolyte solutions by dielectric spectroscopy. Phys. Chem. Chem. Phys. 11, 8984-8999 (2009)

133. Zhang, C., Raugei, S., Eisenberg, B. & Carloni, P. Molecular dynamics in physiological solutions: Force fields, alkali metal ions, and ionic strength. J. Chem. Theory Comput. 6, 2167-2175 (2010)

134. Kalyuzhnyi, Y.V., Vlachy, V. & Dill, K.A. Aqueous alkali halide solutions: can osmotic coefficients be explained on the basis of the ionic sizes alone? Phys. Chem. Chem. Phys. 12, 6260-6266 (2010)

135. Conway, B.E. The state of water and hydrated ions at interfaces. Adv. Colloid. Interface Sci. 8, 91-212 (1977)

136. Sposito, G. Molecular models of ion adsorption on mineral surfaces. Rev. Mineralogy 23, 261-279 (1990)

137. Bunton, C.A., Nome, F., Quina, F.H. & Romsted, L.S. Ion binding and reactivity at charged aqueous interfaces. Acc. Chem. Res. 24, 357-364 (1991)

138. Conway, B.E. Individual solvated ion properties and specificity of ion adsorption effects in processes at electrodes. Chem. Soc. Rev. 21, 253-261 (1992)

139. Benjamin, I. Molecular structure and dynamics at liquid-liquid interfaces. Ann. Rev. Phys. Chem. 48, 407-451 (1997)

140. Cacace, M.G., Landau, E.M. & Ramsden, J.J. The Hofmeister series: salt and solvent effects on interfacial phenomena. Quart. Rev. Biophys. 30, 241-277 (1997)

141. Jungwirth, P. & Tobias, D.J. Ions at the air/water interface. J. Phys. Chem. B 106, 6361-6373 (2002)

142. Wennerström, H. Ion binding to interfaces. Curr. Opin. Colloid Interface Sci. 9, 163-164 (2004)

143. Bradl, H.B. Adsorption of heavy metal ions on soils and soil constituents. J. Colloid Interface Sci. 277, 1-18 (2004)

144. Netz, R.R. Water and ions at interfaces. Curr. Opin. Colloid Interface Sci. 9, 192-197 (2004)

145. Taylor, C.D. & Neurock, M. Theoretical insights into the structure and reactivity of the aqueous/metal interface. Curr. Opin. Solid State & Mater. Sci. 9, 49-65 (2005)

146. Barbero, C.A. Ion exchange at the electrode/electrolyte interface studied by probe beam deflection techniques. Phys. Chem. Chem. Phys. 7, 1885-1899 (2005)

147. Gabovich, A.M., Reznikov, Y.A. & Voitenko, A.I. Excess nonspecific Coulomb ion adsorption at the metal electrode/electrolyte solution interface: Role of the surface layer. Phys. Rev. E 73, 021606/1-021606/12 (2006)

148. Taylor, C.D. & Neurock, M. Theoretical insights into the structure and reactivity of the aqueous/metal interface. Curr. Opin. Solid State Mater. Sci. 9, 49-65 (2006)

149. Jungwirth, P. & Tobias, D.J. Specific effects at the air/water interface. Chem. Rev. 106, 1259-1281 (2006)

150. Jungwirth, P. & Winter, B. Ions at aqueous interfaces: From water surface to hydrated proteins. Ann. Rev. Phys. Chem. 59, 343-366 (2008)

151. McCarty, L.S. & Whitesides, G.M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188-2207 (2008)

152. Wick, C.D. Electrostatic dampening dampens the anion propensity for the air-water interface. J. Chem. Phys. 131, 084715/1-084715/6 (2009)

153. Noah-Vanhoucke, J. & Geissler, P.L. On the fluctuations that drive small ions toward, and away from, interfaces between polar liquids and their vapors. Proc. Natl. Acad. Sci. USA 106, 15125-15130 (2009)

154. Levin, Y. Polarizable ions at interfaces. Phys. Rev. Lett. 102, 147803/1-147803/4 (2009)

155. Bauer, B.A. & Patel, S. Molecular dynamics simulations of nonpolarizable inorganic salt solution interfaces: NaCl, NaBr, and NaI in transferable intermolecular potential 4-point with charge dependent polarizability (TIP4P-QDP) water. J. Chem. Phys. 132, 024713/1-024713/13 (2010)

156. Shamay, E.S. & Richmond, G.L. Ionic disruption of the liquid-liquid interface. J. Phys. Chem. C 114, 12590-12597 (2010)

157. Tamashiro, M.N. & Constantino, M.A. Ions at the water-vapor interface. J. Phys. Chem. B 114, 3583-3591 (2010)

158. Callahan, K.M., Casillas-Ituarte, N.N., Xu, M., Roeselová, M., Allen, H.C. & Tobias, D.J. Effect of magnesium cation on the interfacial properties of aqueous salt solutions. J. Phys. Chem. A 114, 8359-8368 (2010)

159. Arshadi, M., Yamdagni, R. & Kebarle, P. Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions. J. Phys. Chem. 74, 1475-1482 (1970)

160. Keesee, R.G. & Castelman Jr., A.W. Gas-phase studies of hydration complexes of Cl- and I- and comparison to electrostatic calculations in the gas phase. Chem. Phys. Lett. 74, 139-142 (1980)

161. Keesee, R.G., Lee, N. & Castelman Jr., A.W. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions. J. Chem. Phys. 73, 2195-2202 (1980)

162. Castleman, A.W. & Keesee, R.G. Ionic clusters. Chem. Rev. 86, 589-618 (1986)

163. Castleman, A.W. & Keesee, R.G. Gas-phase clusters: Spanning the states of matter. Science 241, 36-42 (1988)

164. Coe, J.V. Connecting cluster ions and bulk aqueous solvation. A new determination of bulk single ion solvation enthalpies. Chem. Phys. Lett. 229, 161-168 (1994)

165. Castleman, A.W. & Bowen, K.H. Clusters: Structure, energetics, and dynamics of intermediate states of matter. J. Phys. Chem. 100, 12911-12944 (1996)

166. Grunwald, E. & Steel, C. A thermodynamic analysis of the first solvation shells of alkali and halide ions in liquid water and in the gas phase. Int. Rev. Phys. Chem. 15, 273-281 (1996)

167. Duncan, M.A. Spectroscopy of metal ion complexes: Gas-phase models for solvation. Ann. Rev. Phys. Chem. 48, 69-93 (1997)

168. Takashima, K. & Riveros, J.M. Gas-phase solvated negative ions. Mass Spectrom. Rev. 17, 409-430 (1998)

169. Laidig, K.E., Speers, P. & Streitwieser, A. Complexation of Li+, Na+, and K+ by water and ammonia. Coord. Chem. Rev. 197, 125-139 (2000)

170. Coe, J.V. Fundamental properties of bulk water from cluster ion data. Int. Rev. Phys. Chem. 20, 33-58 (2001)

171. Bondybey, V.E. & Beyer, M.K. How many molecules make a solution? Int. Rev. Phys. Chem. 21, 277-306 (2002)

172. Robertson, W.H. & Johnson, M.A. Molecular aspects of halide ion hydration: The cluster approach. Annu. Rev. Phys. Chem. 54, 173-213 (2003)

173. Chang, H.C., Wu, C.C. & Kuo, J.L. Recent advances in understanding the structures of medium-sized protonated water clusters. Int. Rev. Phys. Chem. 24, 553-578 (2005)

174. Walker, N.R., Walters, R.S. & Duncan, M.A. Frontiers in the infrared spectroscopy of gas phase metal ion complexes. New J. Chem. 29, 1495-1503 (2005)

175. Rais, J. & Okada, T. Three empirical correlations connecting gaseous cluster energies and solvation energies of alkali metal and halide ions. Anal. Sci. 22, 533-538 (2006)

176. Rais, J. & Okada, T. Erratum to “Three empirical correlations connecting gaseous cluster energies and solvation energies of alkali metal and halide ions” [Anal. Sci. 22, 533-538 (2006)]. Anal. Sci. 22, 919-919 (2006)

177. Beyer, M.K. Hydrated metal ions in the gas phase. Mass Spectrom. Rev. 26, 517-541 (2007)

178. Bush, M.F., Saykally, R.J. & Williams, E.R. Reactivity and infrared spectroscopy of gaseous hydrated trivalent metal ions. J. Am. Chem. Soc. 130, 9122-9128 (2008)

179. Sherman, J. Crystal energies of ionic compounds and thermochemical applications. Chem. Rev. 11, 93-170 (1932)

180. Huggins, M.L. Lattice energies, equilibrium distances, compressibilities and characteristic frequencies of alkali halide crystals. J. Chem. Phys. 5, 143-148 (1937)

181. Wagner, C. The electrochemistry of ionic crystals. J. Electrochem. Soc. 99, 346C-354C (1952)

182. Delauney, J. The theory of specific heats and lattice vibrations. Solid State Phys.: Adv. Res. App. 2, 219-303 (1956)

183. Huntington, H.B. The elastic constants of crystals. Solid State Phys.: Adv. Res. App. 7, 213-351 (1958)

184. Smith, C.S. Macroscopic symmetry and properties of crystals. Solid State Phys.: Adv. Res. App. 6, 175-249 (1958)

185. Leibfried, G. & Ludwig, W. Theory of anharmonic effects in crystals. Solid State Phys.: Adv. Res. App. 12, 275-444 (1961)

186. Gilman, J.J. Mechanical behavior of ionic crystals. Uspekhi Fiz. Nauk 80, 455-503 (1963)

187. Tosi, M.P. & Fumi, F.G. Ionic sizes and Born repulsive parameters in the NaCl-Type alkali halides - II. J. Phys. Chem. Solids 25, 45-52 (1964)

188. Basu, A.N., Roy, D. & Sengupta, S. Polarizable models for ionic-crystals and effective many-body interaction. Phys. Stat. Solidi A 23, 11-32 (1974)

189. Dixon, M. & Murthy, C.S.N. Ion pair potentials for alkali halides and some applications to liquids and defect studies. Phys. Chem. Liq. 12, 83-107 (1982)

190. Martin, T.P. Alkali halide clusters and micro-crystals. Physics Reports 95, 167-199 (1983)

191. Shanker, J. & Agrawal, G.G. Van der Waals potentials in ionic crystals. Phys. Stat. Solidi B 123, 11-26 (1984)

192. Pyper, N.C. Relativistic ab initio calculations of the properties of ionic solids. Philosoph. Trans. Roy. Soc. London A 320, 107-158 (1986)

193. Shanker, J. & Bhende, W.N. Higher-order elastic constants and thermoelastic properties of ionic solids. Phys. Stat. Solidi B 136, 11-30 (1986)

194. Harding, J.H. Computer simulation of defects in ionic solids. Rep. Prog. Phys. 53, 1403-1466 (1990)

195. Ohtaki, H. Molecular aspects on the dissolution and nucleation of ionic-crystals in water. Adv. Inorg. Chem. 39, 401-437 (1992)

196. Rickman, J.M. & le Sar, R. Free-energy calculations in materials research. Annu. Rev. Mater. Res. 32, 195-217 (2002)

197. Allan, N.L., Barrera, G.D., Purton, J.A., Sims, C.E. & Taylor, M.B. Ionic solids at elevated temperatures and/or high pressures: Lattice dynamics, molecular dynamics, Monte Carlo and ab initio studies. Phys. Chem. Chem. Phys. 2, 1099-1111 (2000)

198. de Oliveira, C.A.F., Hamelberg, D. & McCammon, J.A. Estimating kinetic rates from accelerated molecular dynamics simulations: Alanine dipeptide in explicit solvent as a case study. J. Chem. Phys. 127, 175105/1-175105/8 (2007)

199. Lynden-Bell, R.M., del Popolo, M.G., Youngs, T.G.A., Kohanoff, J., Hanke, C.G., Harper, J.B. & Pinilla, C.C. Simulations of ionic liquids, solutions, and surfaces. Acc. Chem. Res. 40, 1138-1145 (2007)

200. Maginn, E.J. Atomistic simulation of the thermodynamic and transport properties of ionic liquids. Acc. Chem. Res. 40, 1200-1207 (2007)

201. Wang, Y., Jiang, W., Yan, T. & Voth, G.A. Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. Acc. Chem. Res. 40, 1193-1199 (2007)

202. Bhargava, B.L., Balasubramanian, S. & Klein, M.L. Modelling room temperature ionic liquids. Chem. Comm. 2008, 3339-3351 (2008)

203. Shim, Y. & Kim, H.J. Dielectric relaxation, ion conductivity, solvent rotation, and solvation dynamics in a room-temperature ionic liquid. J. Phys. Chem. B 112, 11028-11038 (2008)

204. Borodin, O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113, 11463-11478 (2009)

205. Maginn, E.J. Molecular simulation of ionic liquids: Current status and future opportunities. J. Phys.: Condens. Matter 21, 373101/1-373101/17 (2009)

206. Sambasivarao, S.V. & Acevedo, O. Development of OPLS-AA force field parameters for 68 unique ionic liquids. J. Chem. Theory Comput. 5, 1038-1050 (2009)

207. Janz, G.J., Solomons, C. & Gardner, H.J. Physical properties and constitution of molten salts: Electrical conductance, transport, and cryoscopy. Chem. Rev. 58, 461-508 (1958)

208. Inman, D. & White, S.H. Molten salts. Ann. Rep. Prog. Chem. 62, 106-130 (1965)

209. Sangster, M.J.L. & Dixon, M. Interionic potentials in alkali-halides and their use in simulations of molten salts. Adv. Phys. 25, 247-342 (1976)

210. Gillan, M.J. Theories of thermodynamic properties of pure molten salts. Phys. Chem. Liq. 8, 121-141 (1978)

211. Hensel, F. Electrical properties of unusual ionic melts. Adv. Phys. 28, 555-594 (1979)

212. March, N.H. Melting of ionic crystals, defect energies and fast ion conduction. Phys. Chem. Liq. 10, 1-9 (1980)

213. Todheide, K. The influence of density and temperature on the properties of pure molten salts. Angew. Chem. Int. Ed. 19, 606-619 (1980)

214. Rovere, M. & Tosi, M.P. Structure and dynamics of molten salts. Rep. Prog. Phys. 49, 1001-1081 (1986)

215. McGreevy, R.L. Experimental studies of the structure and dynamics of molten alkali and alkaline earth halides. Solid State Phys.: Adv. Res. App. 40, 247-325 (1987)

216. Shanker, J. & Kumar, M. Studies on melting of alkali halides. Phys. Stat. Solidi B 158, 11-49 (1990)

217. Adya, A.K., Takagi, R. & Gaune-Escard, M. Unravelling the internal complexities of molten salts. Z. Naturforsch. A 53, 1037-1048 (1998)

218. Tosi, M.P. Melting and liquid structure of polyvalent metal-halides. Z. Phys. Chem. 184, 121-138 (1994)

219. Guillot, B. & Guissani, Y. Towards a theory of coexistence and criticality in real molten salts. Mol. Phys. 87, 37-86 (1996)

220. Kirillov, S.A. Interactions and picosecond dynamics in molten salts: A review with comparison to molecular liquids. J. Mol. Liq. 76, 35-95 (1998)

221. Lide, D.R. CRC Handbook of Chemistry and Physics. Edition 88 (Internet version). CRC Press, Boca Raton, Florida (2008)

222. Haverlock, T.J., Mirzadeh, S. & Moyer, B.A. Selectivity of calix[4]arene-bis(benzocrown-6) in the complexation and transport of francium ion. J. Am. Chem. Soc. 125, 1126-1127 (2003)

223. Kritskaya, E.B., Burylev, B.P., Moisov, L.P. & Kritskii, V.E. Thermodynamic properties of binary melts of manganese(II) bromide with lithium, cesium, and francium bromides. Russ. J. Phys. Chem. 79, 299-301 (2005)

224. Champion, J., Alliot, C., Renault, E., Mokili, B.M., Chérel, M., Galland, N. & Montavon, G. Astatine standard redox potentials and speciation in acidic medium. J. Phys. Chem. A 114, 576-582 (2010)

225. Dye, J.L., Andrews, C.W. & Ceraso, J.M. Nuclear magnetic resonance studies of alkali metal anions. J. Phys. Chem. 79, 3076-3079 (1975)

226. Dreyer, I., Dreyer, R. & Chalkin, V.A. Cations of astatine in aqueous solutions. Preparation and properties. Radiochem. Radioanal. Lett. 36, 389-398 (1978)

227. Dreyer, I., Dreyer, R., Chalkin, V.A. & Milanov, M. Halide-complexes of stable astatine cations in aqueous solutions. Radiochem. Radioanal. Lett. 40, 145-153 (1979)

228. Dye, J.L. Compounds of alkali metal anions. Angew. Chem. Int. Ed. 18, 587-598 (1979)

229. Milanov, M., Doberenz, V., Khalkin, V.A. & Marinov, A. Chemical properties of positive singly-charged astatine ion in aqueous solution. J. Radioanal. Nucl. Chem. 83, 291-299 (1984)

230. Dreyer, R., Dreyer, I., Fischer, S., Hartmann, H. & Rosch, F. Synthesis and characterization of cationic astatine compounds with sulfur-containing ligands stable in aqueous solutions. J. Radioanal. Nucl. Chem. Lett. 96, 333-342 (1985)

231. Dye, J.L. Physical and chemical properties of alkalides and electrides. Ann. Rev. Phys. Chem. 38, 271-301 (1987)

232. Mezei, M. & Beveridge, D.L. Monte Carlo studies of the structure of dilute aqueous solutions of Li+, Na+, K+, F-, and Cl-. J. Chem. Phys. 74, 6902-6910 (1981)

233. Abraham, M.H., Liszi, J. & Papp, E. Calculations on ionic solvation. Part 6. Structure-making and structure-breaking effects of alkali halide ions from electrostatic entropies of solvation. Correlation with viscosity B-coefficients, nuclear magnetic resonance B'-coefficients and partial molal volumes. J. Chem. Soc. Faraday Trans. 1 78, 197-211 (1982)

234. Impey, R.W., Madden, P.A. & McDonald, I.R. Hydration and mobility of ions in solution. J. Phys. Chem. 87, 5071-5083 (1983)

235. Lee, S.H. & Rasaiah, J.C. Molecular dynamics simulation of ion mobility: 2. Alkali metal and halide ions using the SPC/E model for water at 25°C. J. Phys. Chem. 100, 1420-1425 (1996)

236. Tongraar, A., Liedl, K.R. & Rode, B.M. Born-Oppenheimer ab initio QM/MM dynamics simulations of Na+ and K+ in water: From structure making to structure breaking effects. J. Phys. Chem. A 102, 10340-10347 (1998)

237. Wasse, J.C., Hayama, S., Skipper, N.T., Benmore, C.J. & Soper, A.K. The structure of saturated lithium- and potassium-ammonia solutions as studied by using neutron diffraction. J. Chem. Phys. 112, 7147-7151 (2000)

238. Hribar, B., Southall, N.T., Vlachi, V. & Dill, K.A. How ions affect the structure of water. J. Am. Chem. Soc. 124, 12302-12311 (2002)

239. Schwenk, C.F., Hofer, T.S. & Rode, B.M. “Structure breaking” effect of hydrated Cs+. J. Phys. Chem. A 108, 1509-1514 (2004)

240. Vrbka, L., Mucha, M., Minofar, B., Jungwirth, P., Brown, E.C. & Tobias, D.J. Propensity of soft ions for the air/water interface. Curr. Opin. Coll. Int. Sci. 9, 67-73 (2004)

241. Nickolov, Z.S. & Miller, J.D. Water structure in aqueous solutions of alkali halide salts: FTIR spectroscopy of the OD stretching band. J. Colloid. Interface Sci. 287, 572-580 (2005)

242. Tůma, L., Jenícek, D. & Jungwirth, P. Propensity of heavier halides for the water/vapor interface revisited using the Amoeba force field. Chem. Phys. Lett. 411, 70-74 (2005)

243. Bakker, H.J., Kropman, M.F. & Omta, A.W. Effect of ions on the structure and dynamics of liquid water. J. Phys.: Condens. Matter 17, S3215-S3224 (2005)

244. Hofer, T.S., Randolf, B.R. & Rode, B.M. Structure-breaking effects of solvated Rb(I) in dilute aqueous solution - An ab initio QM/MM MD approach. J. Comput. Chem. 26, 949-956 (2005)

245. Varma, S. & Rempe, S.B. Coordination numbers of alkali metal ions in aqueous solutions. Biophys. Chem. 124, 192-199 (2006)

246. Du, H. & Miller, J.D. Interfacial water structure and surface charge of selected alkali chloride salt crystals in saturated solutions: A molecular dynamics modeling study. J. Phys. Chem. B 111, 10013-10022 (2007)

247. Mancinelli, R., Botti, A., Bruni, F., Ricci, M.A. & Soper, A.K. Perturbation of water structure due to monovalent ions in solution. Phys. Chem. Chem. Phys. 9, 2959-2967 (2007)

248. Mancinelli, R., Botti, A., Bruni, F., Ricci, M.A. & Soper, A.K. Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J. Phys. Chem. B 111, 13570-13577 (2007)

249. Nucci, N.V. & Vanderkooi, J.M. Effects of salts of the Hofmeister series on the hydrogen bond network of water. J. Mol. Liq. 143, 160-170 (2008)

250. Azam, S.S., Hofer, T.S., Randolf, B.R. & Rode, B.M. Hydration of sodium(I) and potassium(I) revisited: A comparative QM/MM and QMCF MD simulation study of weakly hydrated ions. J. Phys. Chem. A 113, 1827-1834 (2009)

251. Harned, H.S. The diffusion coefficients of the alkali metal chlorides and potassium and silver nitrates in dilute aqueous solutions at 25°C. Proc. Natl. Acad. Sci. USA 40, 551-556 (1954)

252. Irish, D.E. & Brooker, M.H. Interactions and residence times in aqueous alkali metal nitrite solutions from Raman spectral measurements. Trans. Faraday Soc. 67, 1916-1922 (1971)

253. Wei, Y.-Z., Chiang, P. & Sridhar, S. Ion size effects on the dynamic and static dielectric properties of aqueous alkali solutions. J. Chem. Phys. 96, 4569-4573 (1992)

254. Lu, R. & Leaist, D.G. Mutual diffusion in solutions of alkali metal halides: Aqueous LiF, NaF and KF at 25°C. J. Chem. Soc. Faraday Trans. 94, 111-114 (1998)

255. Amo, Y., Annaka, M. & Tominaga, Y. Classification of alkali halide aqueous solutions by Kubo number. J. Mol. Liq. 100/2, 143-151 (2002)

256. Horvat, J., Bešter-Rogač, M., Klofutar, C. & Rudan-Tasic, D. Viscosity of aqueous solutions of lithium, sodium, potassium, rubidium and caesium cyclohexylsulfamates from 293.15 K to 323.15 K. J. Solut. Chem. 37, 1329-1342 (2008)

257. Gurney, R.W. Ionic processes in solution. McGraw-Hill, New York, USA (1953)

258. Conway, B.E. & Bockris, J.O'M. Ionic solvation. Mod. Aspects Electrochem. 1, 47-102 (1954)

259. Noyes, R.M. Thermodynamics of ion hydration as a measure of effective dielectric properties of water. J. Am. Chem. Soc. 84, 513-522 (1962)

260. Halliwell, H.F. & Nyburg, S.C. Enthalpy of hydration of the proton. Trans. Farad. Soc. 59, 1126-1140 (1963)

261. Noyes, R.M. Assignment of individual ionic contributions to properties of aqueous ions. J. Am. Chem. Soc. 86, 971-979 (1964)

262. Rosseinsky, D.R. Electrode potentials and hydration energies. Theories and correlations. Chem. Rev. 65, 467-490 (1965)

263. Conway, B.E., Verall, R.E. & Desnoyers, J.E. Specificity in ionic hydration and the evaluation of individual ionic properties. Z. Phys. Chem. (Leipzig) 230, 157-178 (1965)

264. Desnoyers, J.E. & Jolicoeur, C. Hydration effects and the thermodynamic properties of ions. Mod. Aspects Electrochem. 5, 1-89 (1969)

265. Popovych, O. Estimation of medium effects for single ions in non-aqueous solvents. Crit. Rev. Anal. Chem. 1, 73-117 (1970)

266. Llopis, J. Surface potential at liquid interfaces. Mod. Aspects Electrochem. 6, 91-158 (1971)

267. Padova, J.I. Ionic solvation in nonaqueous and mixed solvents. Mod. Asp. Electrochem. 7, 1-82 (1972)

268. Bockris, J.O'M. & Reddy, A.K.N. Modern electrochemistry. Volume 1. Plenum Publishing Corporation, New York, USA (1973)

269. Friedman, H.L. & Krishnan, C.V. Thermodynamics of ion hydration. In: Water: A comprehensive treatise. Volume 3. Franks, F., Ed. Plenum Press, New York, USA, pp 1-118 (1973)

270. Kebarle, P. Gas-phase ion equilibria and ion solvation. Mod. Asp. Electrochem. 9, 1-46 (1974)

271. Desnoyers, J.E. Ionic solute hydration. Phys. Chem. Liq. 7, 63-106 (1977)

272. Randles, J.E.B. Structure at the free surface of water and aqueous electrolyte solutions. Phys. Chem. Liq. 7, 107-179 (1977)

273. Burgess, M.A. Metal Ions in Solution. Ellis Horwood, Chichester, UK (1978)

274. Conway, B.E. The evaluation and use of properties of individual ions in solution. J. Solut. Chem. 7, 721-770 (1978)

275. Marcus, Y. Ion hydration. In: Ion solvation. John Wiley & Sons, New York, USA, pp 87-129 (1985)

276. Conway, B.E. & Ayranci, E. Effective ionic radii and hydration volumes for evaluation of solution properties and ionic adsorption. J. Solut. Chem. 28, 163-192 (1999)

277. Paluch, M. Electrical properties of free surface of water and aqueous solutions. Adv. Colloid. Interface Sci. 84, 27-45 (2000)

278. Llano, J. & Eriksson, L.A. First principles electrochemistry: Electrons and protons reacting as independent ions. J. Chem. Phys. 117, 10193-10206 (2002)

279. Dill, K.A., Truskett, T.M., Vlachy, V. & Hribar-Lee, B. Modeling water, the hydrophobic effect, and ion solvation. Ann. Rev. Biophys. Biomol. Struc. 34, 173-199 (2005)

280. Collins, K.D. Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization. Biophys. Chem. 119, 271-281 (2006)

281. Bronsted Nielsen, S. & Andersen, L.H. Properties of microsolvated ions: From the microenvironment of chromophore and alkali metal ions in proteins to negative ions in water clusters. Biophys. Chem. 124, 229-237 (2006)

282. Collins, K.D., Neilson, G.W. & Enderby, J.E. Ions in water: Characterizing the forces that control chemical processes and biological structure. Biophys. Chem. 128, 96-104 (2007)

283. Ben-Amotz, D. & Underwood, R. Unraveling water's entropic mysteries: A unified view of nonpolar, polar, and ionic hydration. Acc. Chem. Res. 41, 957-967 (2008)

284. Ferse, A. Zur Problematik individueller thermodynamischer Aktivitätskoeffizienten einzelner Ionensorten in Elektrolytlösungen hoher Konzentration. Z. anorg. allg. Chem. 634, 797-815 (2008)

285. Marcus, Y. Tetraalkylammonium ions in aqueous and non-aqueous solutions. J. Solut. Chem. 37, 1071-1098 (2008)

286. Floriano, W.B. & Nascimento, M.A.C. Dielectric constant and density of water as a function of pressure at constant temperature. Braz. J. Phys. 34, 38-41 (2004)

287. Kell, G.S. Density, thermal expansivity, and compressibility of liquid water from 0° to 150°C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20, 97-105 (1975)

288. Vavruch, I. On the evaluation of the surface tension-pressure coefficient for pure liquids. J. Colloid. Interface Sci. 169, 249-250 (1995)

289. Cooper, J.R. IAPWS release on surface tension of ordinary water substance. Issued by the International Association for the Properties of Water and Steam 1994, 1-4 (1994)

290. Fernández, D.P., Goodwin, A.R.H., Lemmon, E.W., Levelt Sengers, J.M.H. & Williams, R.C. A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye-Hückel coefficients. J. Phys. Chem. Ref. Data 26, 1125-1166 (1997)

291. Badyal, Y.S., Saboungi, M.-L., Price, D.L., Shastri, S.D., Haeffner, D.R. & Soper, A.K. Electron distribution in water. J. Chem. Phys. 112, 9206-9208 (2006)

292. Coulson, C.A. & Eisenberg, D. Interactions of H2O molecules in ice. I. The dipole moment of an H2O molecule in ice. Proc. Roy. Soc. London A 291, 445-453 (1966)

293. Haar, L., Gallagher, J.S. & Kell, G.S. NBS/NRC steam tables. Hemisphere Publishing, New York, USA (1984)

294. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. & Nuttall, R.L. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11 Suppl. 2, 1-392 (1982)

295. Kell, G.S. Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66-69 (1967)

296. Ellison, W.J., Lamkaouchi, K. & Moreau, J.-M. Water: A dielectric reference. J. Mol. Liq. 68, 171-279 (1996)

297. Coulomb, C.A. Sur l'électricité et le magnétisme, premier mémoire, construction et usage d'une balance électrique, fondée sur la propriété qu'ont les fils de métal, d'avoir une force de réaction de torsion proportionnelle à l'angle de torsion. Mémoires de l'Académie Royale des Sciences 1785, 569-577 (1788)

298. Huber, K.P. & Herzberg, G. Molecular spectra and molecular structure. Constants of diatomic molecules. Volume 4. Van Nostrand Reinhold, New York, USA (1979)

299. McCaffrey, P.D., Mawhorter, R.J., Turner, A.R., Brain, P.T. & Rankin, D.W.H. Accurate equilibrium structures obtained from gas-phase electron diffraction data: sodium chloride. J. Phys. Chem. A 111, 6103-6114 (2007)

300. Feller, D., Glendening, E.D., Woon, D.E. & Feyereisen, M.W. An extended basis set ab initio study of alkali metal cation-water clusters. J. Chem. Phys. 103, 3526-3542 (1995)

301. Kim, J., Lee, H.M., Suh, S.B., Majumdar, D. & Kim, K.S. Comparative ab initio study of the structures, energetics and spectra of X-·(H2O)n=1-4 [X=F,Cl,Br,I] clusters. J. Chem. Phys. 113, 5259-5272 (2000)

302. Thompson, A. & Taylor, B.N. Guide for the use of the international system of units (SI). NIST special publication 811, 1-76 (2008)

303. Glasstone, S. & Dolan, P. The effects of nuclear weapons. Edition 3. US Department of Defense/US Energy Research and Development Administration, Washington D.C., USA (1977)

304. Debye, P. Polar molecules. The chemical catalog company Inc., New York, USA (1929)

305. Hill, N., Vaughan, W.E., Price, A.H. & Davies, M.D. Dielectric properties and molecular behaviour. Van Nostrand Co., Ltd., London, UK (1969)

306. Hasted, J.B. Liquid water: Dielectric properties. In: Water, a comprehensive treatise. Volume 1. Franks, F., Ed. Plenum, New York, USA, pp 255-309 (1973)

307. Hasted, J.B. Aqueous dielectrics. Chapman and Hall, London, UK (1973)

308. Böttcher, C.J.F., van Belle, O.C., Bordewijk, P. & Rip, A. Theory of electric polarization. Elsevier, Amsterdam, Netherlands (1973)

309. Fröhlich, H. Theory of dielectrics: Dielectric constant and dielectric loss. Edition 2. Oxford Univ. Press, Oxford, UK (1987)

310. Scaife, B.K.P. Principles of dielectrics. Oxford University Press, Oxford, UK (1989)

311. van Hippel, A.R. Dielectrics and waves. Wiley, New York, USA (1954)

312. Oehme, F. Dielektrische Messmethoden. Verlag Chemie, Weinheim, Germany (1961)

313. Kaatze, U. Perspectives in dielectric measurement techniques for liquids. Meas. Sci. Technol. 19, 112001/1-112001/4 (2008)

314. Grove, T.T., Masters, M.F. & Miers, M.F. Determining dielectric constants using a parallel plate capacitor. Am. J. Phys. 73, 52-56 (2005)

315. Barthel, J. & Buchner, R. Dielectric properties of nonaqueous electrolyte solutions. Pure Appl. Chem. 58, 1077-1090 (1986)

316. Barthel, J., Buchner, R., Bachhuber, K., Hetzenauer, H., Kleebauer, M. & Ortmaier, H. Molecular processes in electrolyte solutions at microwave frequencies. Pure Appl. Chem. 62, 2287-2296 (1990)

317. Barthel, J. & Buchner, R. High frequency permittivity and its use in the investigation of solution properties . Pure Appl. Chem. 63, 1473-1482 (1991)

318. Barthel, J. & Buchner, R. Dielectric permittivity and relaxation of electrolyte solutions and their solvents. Chem. Soc. Rev. 21, 263-270 (1992)

319. Barthel, J., Hetzenauer, H. & Buchner, R. Dielectric relaxation of aqueous electrolyte solutions. I. Solvent relaxation of 1:2, 2:1 and 2:2 electrolyte solutions. Ber. Bunsenges. Phys. Chem. 96, 988-997 (1992)

320. Barthel, J., Buchner, R., Eberspächer, P.-N., Münsterer, M., Stauber, J. & Wurm, B. Dielectric relaxation spectroscopy of electrolyte solutions. Recent developments and prospects. J. Mol. Liq. 78, 83-109 (1998)

321. Buchner, R., Hefter, G.T. & May, P.M. Dielectric relaxation of aqueous NaCl solutions. J. Phys. Chem. A 103, 1-9 (1999)

322. Buchner, R. & Barthel, J. Dielectric relaxation in solutions. Annu. Rep. Prog. Chem. Sect. C 97, 349-382 (2001)

323. Barthel, J., Buchner, R. & Münsterer, M. Electrolyte data collection. Part 2: Dielectric properties of water and aqueous electrolyte solutions. Dechema, Frankfurt a. M., Germany (1995)

324. Barthel, J., Hetzenauer, H. & Buchner, R. Dielectric relaxation of aqueous electrolyte solutions. II. Ion-pair relaxation of 1:2, 2:1 and 2:2 electrolyte solutions. Ber. Bunsenges. Phys. Chem. 96, 1424-1432 (1992)

325. Chan, D.Y.C., Mitchell, D.J. & Ninham, B.W. A model of solvent structure around ions. J. Chem. Phys. 70, 2946-2957 (1979)

326. Rashin, A.A. Electrostatics of ion-ion interactions in solution. J. Phys. Chem. 93, 4664-4669 (1989)

327. Pratt, L.R., Hummer, G. & Garciá, A.E. Ion pair potentials-of-mean-force in water. Biophys. Chem. 51, 147-165 (1994)

328. Resat, H. Correcting for solvent-solvent electrostatic cutoffs considerably improves the ion-pair potential of mean force. J. Chem. Phys. 110, 6887-6889 (1999)

329. Hünenberger, P.H. & McCammon, J.A. Ewald artifacts in computer simulations of ionic solvation and ion-ion interaction: a continuum electrostatics study. J. Chem. Phys. 110, 1856-1872 (1999)

330. Hünenberger, P.H. Lattice-sum methods for computing electrostatic interactions in molecular simulations. In: Simulation and theory of electrostatic interactions in solution: Computational chemistry, biophysics, and aqueous solution. Hummer, G. & Pratt, L.R., Eds. American Institute of Physics, New York, USA, pp 17-83 (1999)

331. Boresch, S. & Steinhauser, O. The dielectric self-consistent field method. I. Highways, byways, and illustrative results. J. Chem. Phys. 115, 10780-10792 (2001)

332. Allen, R. & Hansen, J.-P. Density functional approach to the effective interaction between charges within dielectric cavities. J. Phys. Condens. Matter 14, 11981-11987 (2002)

333. Bergdorf, M., Peter, C. & Hünenberger, P.H. Influence of cutoff truncation and artificial periodicity of electrostatic interactions in molecular simulations of solvated ions: A continuum electrostatics study. J. Chem. Phys. 119, 9129-9144 (2003)

334. Peter, C., van Gunsteren, W.F. & Hünenberger, P.H. A fast-Fourier-transform method to solve continuum-electrostatics problems with truncated electrostatic interactions: Algorithm and application to ionic solvation and ion-ion interaction. J. Chem. Phys. 119, 12205-12223 (2003)

335. Kastenholz, M. & Hünenberger, P.H. Development of a lattice-sum method emulating non-periodic boundary conditions for the treatment of electrostatic interactions in molecular simulations. A continuum electrostatics study. J. Chem. Phys. 124, 124108/1-124108/12 (2006)

336. Linse, P. Electrostatics in the presence of spherical dielectric discontinuities. J. Chem. Phys. 128, 214505- (2008)

337. Berkowitz, M., Omar, A.K., McCammon, J.A. & Rossky, P. Sodium chloride ion pair interaction in water: Computer simulation. Chem. Phys. Lett. 106, 577-580 (1984)

338. van Eerden, J., Briels, W.J., Harkema, S. & Feil, D. Potential of mean force by thermodynamic integration: Molecular-dynamics simulation of decomplexation. Chem. Phys. Lett. 164, 370-376 (1989)

339. Dang, L.X. & Pettitt, B.M. A theoretical study of like ion pairs in solution. J. Phys. Chem. 94, 4303-4308 (1990)

340. Boudon, S., Wipff, G. & Maigret, B. Monte Carlo simulations on the like-charged guanidinium-guanidinium ion pair in water. J. Phys. Chem. 94, 6056-6061 (1990)

341. Dang, L.X., Rice, J.E. & Kollman, P.A. The effect of water models on the interaction of the sodium-chloride ion pair in water: Molecular dynamics simulations. J. Chem. Phys. 93, 7528-7529 (1990)

342. Guàrdia, E., Rey, R. & Padró, J.A. Na+-Na+ and Cl--Cl- ion pairs in water: Mean force potentials by constrained molecular dynamics. J. Chem. Phys. 95, 2823-2831 (1991)

343. Dang, L.X., Pettitt, B.M. & Rossky, P.J. On the correlation between like ion pairs in water. J. Chem. Phys. 96, 4046-4047 (1992)

344. Dang, L.X. Fluoride-fluoride association in water from molecular dynamics simulations. Chem. Phys. Lett. 200, 21-25 (1992)

345. Rey, R. & Guàrdia, E. Dynamical aspects of the Na+-Cl- ion pair association in water. J. Phys. Chem. 96, 4712-4718 (1992)

346. Hummer, G., Soumpasis, D.M. & Neumann, M. Computer simulations do not support Cl-Cl pairing in aqueous NaCl solution. Mol. Phys. 81, 1155-1163 (1994)

347. Dang, L.X. Free energies for association of Cs+ to 18-crown-6 in water. A molecular dynamics study including counter ions. Chem. Phys. Lett. 227, 211-214 (1994)

348. Payne, V.A., Forsyth, M., Ratner, M.A., Shriver, D.F. & de Leeuw, S.W. Highly concentrated salt solutions: Molecular dynamics simulations of structure and transport. J. Chem. Phys. 100, 5201-5210 (1994)

349. Smith, D.E. & Dang, L.X. Interionic potentials of mean force for SrCl2 in polarizable water. A computer simulation study. Chem. Phys. Lett. 230, 209-214 (1994)

350. Figueirido, F., del Buono, G.S. & Levy, R.M. On finite-size effects in computer simulations using the Ewald potential. J. Chem. Phys. 103, 6133-6142 (1995)

351. Dang, L.X. Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: A molecular-dynamics study. J. Am. Chem. Soc. 117, 6954-6960 (1995)

352. Dang, L.X. & Kollman, P.A. Free energy of association of the K+:18-crown-6 complex in water: A new molecular dynamics study. J. Phys. Chem. 99, 55-58 (1995)

353. Friedman, R.A. & Mezei, M. The potentials of mean force of sodium chloride and sodium dimethylphosphate in water: An application of adaptive umbrella sampling. J. Chem. Phys. 102, 419-426 (1995)

354. Laria, D. & Fernández-Prini, R. Molecular dynamics study of water clusters containing ion pairs: From contact to dissociation. J. Chem. Phys. 102, 7664-7673 (1995)

355. Resat, H., Mezei, M. & McCammon, J.A. Use of the grand canonical ensemble in potential of mean force calculations. J. Phys. Chem. 100, 1426-1433 (1996)

356. Soetens, J.-C., Millot, C., Chipot, C., Jansen, G., Ángyán, J.G. & Maigret, B. Effect of polarizability on the potential of mean force of two cations. The guanidinium-guanidinium ion pair in water. J. Phys. Chem. B 101, 10910-10917 (1997)

357. Rozanska, X. & Chipot, C. Modeling ion-ion interaction in proteins: A molecular dynamics free energy calculation of the guanidinium-acetate association. J. Chem. Phys. 112, 9691-9694 (2000)

358. Martorana, V., la Fata, L., Bulone, D. & San Biagio, P.L. Potential of mean force between two ions in a sucrose rich aqueous solution. Chem. Phys. Lett. 329, 221-227 (2000)

359. Peslherbe, G.H., Ladanyi, B.M. & Hynes, J.T. Free energetics of NaI contact and solvent-separated ion pairs in water clusters. J. Phys. Chem. A 104, 4533-4548 (2000)

360. Masunov, A. & Lazaridis, T. Potentials of mean force between ionizable amino acid side chains in water. J. Am. Chem. Soc. 125, 1722-1730 (2003)

361. Shinto, H., Morisada, S., Miyahara, M. & Higashitani, K. A reexamination of mean force potentials for the methane pair and the constituent ion pairs of NaCl in water. J. Chem. Engin. Jpn. 36, 57-65 (2003)

362. Liu, W.B., Wood, R.H. & Doren, D.J. Hydration free energy and potential of mean force for a model of the sodium chloride ion pair in supercritical water with ab initio solute-solvent interactions. J. Chem. Phys. 118, 2837-2844 (2003)

363. Maksimiak, K., Rodziewicz-Motowidlo, S., Czaplewski, C., Liwo, A. & Scheraga, H.A. Molecular simulation study of the potentials of mean force for the interactions between models of like-charged and between charged and nonpolar amino acid side chains in water. J. Phys. Chem. B 107, 13496-13504 (2003)

364. Hassan, S.A. Intermolecular potentials of mean force of amino acid side chain interactions in aqueous medium. J. Phys. Chem. B 108, 19501-19509 (2004)

365. Shinto, H., Morisada, S. & Higashitani, K. A reexamination of mean force potentials for the constituent ion pairs of tetramethylammonium chloride in water. J. Chem. Engin. Jpn. 37, 1345-1356 (2004)

366. Zidi, Z.S. Solvation of sodium-chloride ion pair in water cluster at atmospheric conditions: Grand canonical ensemble Monte Carlo simulation. J. Chem. Phys. 123, 064309/1-064309/13 (2005)

367. Ghoufi, A. & Malfreyt, P. Calculations of the potential of mean force from molecular dynamics simulations using different methodologies: An application to the determination of the binding thermodynamic properties of an ion pair. Mol. Phys. 104, 3787-3799 (2006)

368. Hess, B., Holm, C. & van der Vegt, N. Osmotic coefficients of atomistic NaCl(aq) force fields. J. Chem. Phys. 124, 164509/1-164509/8 (2006)

369. Keasler, S.J., Nellas, R.B. & Chen, B. Water mediated attraction between repulsive ions: A cluster-based simulation approach. J. Chem. Phys. 125, 144520/1-144520/5 (2006)

370. Ghoufi, A., Archirel, P., Morel, J.-P., Morel-Desrosiers, N., Boutin, A., Methodology for the calculation of the potential of mean force for a cation-π complex in water. Chem. Phys. Chem. 8, 1648-1656 (2007)

371. Jagoda-Cwiklik, B., Vácha, R., Lund, M., Srebro, M. & Jungwirth, P. Ion pairing as a possible clue for discriminating between sodium and potassium in biological and other complex environments. J. Phys. Chem. B 111, 14077-14079 (2007)

372. Makowski, M., Liwo, A., Maksimiak, K., Makowska, J. & Scheraga, H.A. Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. 2. Tests with simple spherical systems. J. Phys. Chem. B 111, 2917-2924 (2007)

373. Bruneval, F., Donadio, D. & Parrinello, M. Molecular dynamics study of the solvation of calcium carbonate in water. J. Phys. Chem. B 111, 12219-12227 (2007)

374. Hassan, S.A. Computer simulation of ion cluster speciation in concentrated aqueous solutions at ambient conditions. J. Phys. Chem. B 112, 10573-10584 (2008)

375. Khavrutskii, I.V., Dzubiella, J. & McCammon, J.A. Computing accurate potentials of mean force in electrolyte solutions with the generalized gradient-augmented harmonic Fourier beads method. J. Chem. Phys. 128, 044106/1-044106/13 (2008)

376. Baumketner, A. Removing systematic errors in potentials of mean force computed in molecular simulations of solvated ions using reaction field-based electrostatics. J. Chem. Phys. 130, 104106/1-104106/10 (2009)

377. Timko, J., Bucher, D. & Kuyucak, S. Dissociation of NaCl in water from ab initio molecular dynamics simulations. J. Chem. Phys. 132, 114510/1-114510/8 (2010)

378. Bredig, M.A., Bronstein, H.R. & Smith Jr., W.T. Miscibility of liquid metals with salts. II. The potassium-potassium fluoride and cesium-cesium halide systems. J. Am. Chem. Soc. 77, 1454-1458 (1955)

379. Bredig, M.A., Johnson, J.W. & Smith Jr., W.T. Miscibility of liquid metals with salts. I. The sodium-sodium halide systems. J. Am. Chem. Soc. 77, 307-312 (1955)

380. Johnson, J.W. & Bredig, M.A. Miscibility of metals with salts in the molten state. III. The potassium-potassium halide systems. J. Phys. Chem. 62, 604-607 (1958)

381. Bredig, M.A. & Johnson, J.W. Miscibility of metals with salts. V. The rubidium-rubidium halide systems. J. Phys. Chem. 64, 1899-1900 (1960)

382. Bredig, M.A. & Bronstein, H.R. Miscibility of liquid metals with salts. IV. The sodium-sodium halide systems at high temperatures. J. Phys. Chem. 64, 64-67 (1960)

383. Gellings, P.J., Huiskamp, G.B. & van den Broek, E.G. A model for solutions of non-metals in liquid alkali metals. J. Chem. Soc. Faraday Trans. II, 531-536 (1972)

384. Gellings, P.J., van der Scheer, A. & Caspers, W.J. Extension of a model for solutions of non-metals in liquid alkali metals: Calculation of the enthalpy of solvation. J. Chem. Soc. Faraday Trans. II, 531-536 (1974)

385. Yokokawa, H. & Kleppa, O.J. Thermodynamics of liquid cesium-cesium halide mixtures at high temperatures. J. Chem. Phys. 76, 5574-5587 (1982)

386. Pietzko, S. & Schmutzler, R.W. Determination of the thermodynamic activity of potassium in K/KCl melts. Z. Phys. Chem. - Int. J. Res. Phys. Chem. Chem. Phys. 193, 123-138 (1996)

387. Gurnett, D.A. & Bhattacharjee, A. Introduction to plasma physics: With space and laboratory applications. Cambridge University Press, Cambridge, UK (2005)

388. Kassabji, F. & Fauchais, P. Les générateurs à plasma. Revue Phys. Appl. 16, 549-577 (1981)

389. Graf, S., Altwegg, K., Balsiger, H., Fiethe, B. & Fischer, J. First pressure measurements on-board the ESA Rosetta spacecraft. Geophys. Res. Abstracts 8, 02149/1-02149/1 (2006)

390. van Atta, C.M. & Hablanian, M. Vacuums and vacuum technology. In: Encyclopedia of Physics. Lerner, R.G. & Trigg, G.L., Eds. VCH Publisher, New York, USA, pp 1330-1334 (1991)

391. Chang, J.-S., Kelly, A.J. & Crowley, J.M. Handbook of electrostatic processes. Marcel Dekker, New York (1995)

392. Rosenstock, H.M. The measurement of ionization and appearance potentials. Int. J. Mass Spectrom. Ion Phys. 20, 139-190 (1976)

393. Rienstra-Kiracofe, J.C., Tschumper, G.S., Schaefer, H.F., Nandi, S. & Ellison, G.B. Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations. Chem. Rev. 102, 231-282 (2002)

394. Madelung, E. The electric field in systems of regularly arranged point charges. Phys. Z. 19, 524-533 (1918)

395. Born, M. & Landé, A. Über die Berechnung der Kompressibilität regulärer Kristalle aus der Gittertheorie. Verh. dtsch. physik. Ges. 20, 210-216 (1918)

396. Born, M. Eine thermochemische Anwendung der Gittertheorie. Verh. dtsch. physik. Ges. 21, 13-24 (1919)

397. Born, M. & Mayer, J. Zur Gittertheorie der Ionenkristalle. Z. Phys. 75, 1-18 (1932)

398. Kapustinskii, A.F. Lattice energy of ionic crystals. Quart. Rev. 10, 283-294 (1956)

399. Maradudin, A. Theory of lattice dynamics in the harmonic approximation. Edition 2. Academic Press Inc., New York, USA (1971)

400. Wallace, D.C. Thermodynamics of crystals. Wiley, New York, USA (1972)

401. Ashcroft, N.W. & Mermin, N.D. Solid state physics. Holt, Rinehart & Winston, New York, USA (1976)

402. Herring, C. & Nichols, M.H. Thermionic emission. Rev. Mod. Phys. 21, 185-270 (1949)

403. Riviere, J.C. Work function: Measurements and results. In: Solid state surface science. Volume 1. Green, M., Ed. Decker, New York, USA, pp 179-289 (1969)

404. Klein, O., Die Normal-Voltapotentiale Δψo der wichtigsten elektrochemischen Zweiphasensysteme, insbesondere der Elektroden: Metall/Metallsalzlösung. Z. Elektrochem. 43, 570-584 (1937)

405. Klein, O., Normalvoltapotentiale Δψo elektrochemischer Zweiphasensysteme. Zugleich ein Beitrag zur zeitlichen Oberflächenstrukturveränderung hochkonzentrierter Elektrolytlösungen. Z. Elektrochem. 44, 562-568 (1938)

406. Verwey, E.J.W. The electrical potential drop at the free surface of water, and other phase boundary potentials. Rec. Trav. Chim. 61, 564-572 (1942)

407. Hush, N.S. The free energies of hydration of gaseous ions. Austral. J. Sci. Res. 1, 480-493 (1948)

408. Strehlov, H. Zum Problem des Einzelelektrodenpotentials. Z. Elektrochem. 56, 119-129 (1952)

409. Passoth, G. Über die Hydrationsenergien und die scheinbaren Molvolumen einwertiger Ionen. Z. Phys. Chem. (Leipzig) 203, 275-291 (1954)

410. Mishchenko, K.P. & Kvyat, E.I. Solvatatsiya ionov v rastvorakh elektrolitov. 3. Skachok potentsiala na granitse vodnyi rastvor-gazovaya faza. Zh. Fiz. Khim. 28, 1451-1457 (1954)

411. Randles, J.E.B. The real hydration energies of ions. Trans. Farad. Soc. 52, 1573-1581 (1956)

412. de Bethune, A.J. Recalculation of the Latimer, Pitzer and Slansky absolute electrode potential - A discussion of its operational significance. J. Chem. Phys. 29, 616-625 (1958)

413. Case, B. & Parsons, R. The real free energies of solvation of ions in some non-aqueous and mixed solvents. Trans. Faraday Soc. 63, 1224-1239 (1967)

414. Bockris, J.O'M. & Argade, S.D. Work function of metals and the potential at which they have zero charge in contact with solutions. J. Chem. Phys. 11, 5133-5134 (1968)

415. Schiffrin, D.J. Real standard entropy of ions in water. Trans. Faraday Soc. 66, 2464-2468 (1970)

416. Nedermeijer-Denessen, H.J.M. & de Ligny, C.L. A revised calculation of the standard chemical free enthalpy and the standard enthalpy of hydration of the hydrogen ion and of the surface potential of water at 25°C. J. Electroanal. Chem. 57, 265-266 (1974)

417. Klots, C.E. Solubility of protons in water. J. Phys. Chem. 85, 3585-3588 (1981)

418. Krishtalik, L.I., Alpatova, N.M. & Ovsyannikova, E.V. Determination of the surface potentials of solvents. J. Electroanal. Chem. 329, 1-9 (1992)

419. Fawcett, W.R. The ionic work function and its role in estimating absolute electrode potentials. Langmuir 24, 9768-9875 (2008)

420. Krishtalik, L.I. The surface potential of solvent and the intraphase pre-existing potential. Russ. J. Electrochem. 44, 43-49 (2008)

421. Jackson, J.D. Classical electrodynamics. Edition 3. John Wiley & Sons, New York, USA (1999)

422. Randles, J.E.B. The interface between aqueous electrolyte solutions and the gas phase. Adv. Electrochem. Eng. 3, 1-30 (1963)

423. Harrison, J.A., Randles, J.E.B. & Schiffrin, D.J. Ionic hydration and the thermodynamic cationic surface excess at the mercury-aqueous electrolyte interface. J. Electroanal. Chem. 25, 197-207 (1970)

424. Conway, B.E. Ion hydration near air/water interfaces and the structure of liquid surfaces. J. Electroanal. Chem. 65, 491-504 (1975)

425. Madden, W.G., Gomer, R. & Mandell, M.J. The effect of electrolyte on dipole layers at liquid-air interfaces. J. Phys. Chem. 81, 2652-2657 (1977)

426. Schurhammer, R. & Wipff, G. About the TATB hypothesis: solvation of the AsΦ4+ and BΦ4- ions and their tetrahedral and spherical analogues in aqueous/nonaqueous solvents and at water-chloroform interfaces. New. J. Chem. 23, 381-391 (1999)

427. Schurhammer, R. & Wipff, G. About the TATB assumption: effect of charge reversal on transfer of large spherical ions from aqueous to non-aqueous solvents and on their interfacial behaviour. J. Mol. Struct. (Theochem) 500, 139-155 (2000)

428. Schurhammer, R., Engler, E. & Wipff, G. Hydrophobic ions in TIP5P water and at water-chloroform interfaces: The effect of sign inversion investigated by MD and FEP simulations. J. Phys. Chem. B 105, 10700-10708 (2001)

429. Schurhammer, R. & Wipff, G. Corrigendum to “About the TATB assumption: effect of charge reversal on transfer of large spherical ions from aqueous to non-aqueous solvents and on their interfacial behaviour.” [J. Mol. Struct. (Theochem) 500, 139-155 (2000)] J. Mol. Struct. (Theochem) 536, 289-289 (2001)

430. Dang, L.X. & Chang, T.-M. Molecular mechanism of ion binding to the liquid/vapor interface of water. J. Phys. Chem. B 106, 235-238 (2002)

431. Paul, S. & Chandra, A. Dynamics of water molecules at liquid-vapour interfaces of aqueous ionic solutions: effects of ion concentration. Chem. Phys. Lett. 373, 87-93 (2003)

432. Manciu, M. & Ruckenstein, E. On the interactions of ions with the air/water interface. Langmuir 21, 11312-11319 (2005)

433. Chang, T.-M. & Dang, L.X. Recent advances in molecular simulations of ion solvation at liquid interfaces. Chem. Rev. 106, 1305-1322 (2006)

434. Hrobárik, T., Vrbka, L. & Jungwirth, P. Selected biologically relevant ions at the air/water interface: A comparative molecular dynamics study. Biophys. Chem. 124, 238-242 (2006)

435. Ishiyama, T. & Morita, A. Molecular dynamics study of gas-liquid aqueous sodium halide interfaces. I. Flexible and polarizable molecular modeling and interfacial properties. J. Phys. Chem. 111, 721-737 (2007)

436. Thomas, J.L., Roeselov, M., Dang, L.X. & Tobias, D.J. Molecular dynamics simulations of the solution-air interface of aqueous sodium nitrate. J. Phys. Chem. A 111, 3091-3098 (2007)

437. Eggimann, B.L. & Siepmann, J.I. Size effects on the solvation of anions at the aqueous liquid-vapor interface. J. Phys. Chem. C 112, 210-218 (2008)

438. Brown, M.A., D'Auria, R., Kuo, I.-F.W., Krisch, M.J., Starr, D.E., Bluhm, H., Tobias, D.J. & Hemminger, J.C. Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions. Phys. Chem. Chem. Phys. 10, 4778-4784 (2008)

439. Warren, G.L. & Patel, S. Electrostatic properties of aqueous salt solution interfaces: A comparison of polarizable and nonpolarizable ion models. J. Phys. Chem. B 112, 11679-11693 (2008)

440. Warren, G.L. & Patel, S. Comparison of the solvation structure of polarizable and nonpolarizable ions in bulk water and near the aqueous liquid-vapor interface. J. Phys. Chem. C 113, 7455-7467 (2008)

441. Frumkin, A.N. Phasengrenzkräfte und Adsorbtion an der Trennungsfläche Luft | Lösung anorganischer Elektrolyte. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 109, 34-48 (1924)

442. Randles, J.E.B. Ionic hydration and the surface potential of aqueous electrolytes. Discuss. Faraday Soc. 24, 194-199 (1957)

443. Buhl, A. Über die Potentialdifferenz in der Doppelschicht an der Oberfläche einfacher Elektrolyte und des reinen Wassers. Ann. Phys. 389, 211-244 (1927)

444. Gomer, R. & Tryson, G. An experimental determination of absolute half-cell emf's and single ion free energies of solvation. J. Chem. Phys. 66, 4413-4424 (1977)

445. Farrell, J.R. & McTigue, P. Precise compensating potential difference measurements with a voltaic cell. The surface potential of water. J. Electroanal. Chem. 139, 37-56 (1982)

446. Farrell, J.R. & McTigue, P. Temperature dependence of the compensating potential difference of a voltaic cell. J. Electroanal. Chem. 163, 129-136 (1984)

447. Borazio, A., Farrell, J.R. & McTigue, P. Charge distribution at the gas-water interface. The surface potential of water. J. Electroanal. Chem. 193, 103-112 (1985)

448. Frumkin, A.N., Iofa, Z.A. & Gerovich, M.A. K voprosu o raznosti potentsialov na granitse voda gaz. Zh. Fiz. Khim. 10, 1455-1468 (1956)

449. Kamieński, B. The nature of the electric potential at the free surface of aqueous solutions. Electrochim. Acta 1, 272-277 (1959)

450. Kamieński, B. Zależność między napięciem powierzchniowym i elektrycznym na powierzchni swobodnej roztworów (Surface tension and electric potential on the free surface of solutions). Wiad. Chem. 14, 619-648 (1960)

451. Blank, M. & Ottewil, R.H. The adsorption of aromatic vapors on water surfaces. J. Phys. Chem. 68, 2206-2211 (1964)

452. Demchak, R.J. & Fort Jr., T. Surface dipole moment of close-packed un-ionized monolayers at the air-water interface. J. Colloid. Interface Sci. 46, 191-202 (1974)

453. Koczorowski, Z. Surface potentials of liquid solutions and solvents. Bull. Pol. Acad. Sci. Chem. 45, 225-242 (1997)

454. Parfenyuk, V.I. Surface potential at the gas-aqueous solution interface. Colloid J. 64, 588-595 (2002)

455. Parsons, R. Equilibrium properties of electrified interphases. Mod. Aspects Electrochem. 1, 103-179 (1954)

456. Gibbs, J.W. On the equilibrium of heterogeneous substances. Trans. Connecticut Acad. 3, 343-524 (1878)

457. Marcus, Y. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem. 51, 111-127 (1994)

458. Ben-Naim, A. Molecular theory of solutions. Oxford University Press, Oxford, UK (2006)

459. Damaskin, B.B. & Petrii, O.A. Vvedenie v elektrokhimicheskuyu kinetiku (Electrochemical kinetics: An introduction). Vysshaya Shkola, Moskow, UdSSR (1983)

460. Koczorowski, Z. & Zagórska, I. Temperature coefficient of the surface potential of methanol. Rocz. Chém. 44, 911-913 (1970)

461. Trasatti, S. Interfacial behaviour of non-aqueous solvents. Electrochim. Acta 32, 843-850 (1987)

462. Barraclough, C.G., Borazio, A., McTigue, P.T. & Verity, B. The real standard potential of the aqueous hydrogen scale of the silver/silver chloride electrode in methanol: the surface potential of methanol. J. Electroanal. Chem. 243, 353-365 (1988)

463. Matsumoto, M. & Kataoka, Y. Molecular orientation near liquid-vapor interface of methanol: Simulational study. J. Chem. Phys. 90, 2398-2407 (1989)

464. Matsumoto, M. & Kataoka, Y. Erratum to “Molecular orientation near liquid-vapor interface of methanol: Simulational study” [J. Chem. Phys. 90, 2398-2407 (1989)]. J. Chem. Phys. 95, 7782-7782 (1991)

465. Barraclough, C.G., McTigue, P.T. & Ng, Y.L. Surface potentials of water, methanol and water+methanol mixtures. J. Electroanal. Chem. 329, 9-24 (1992)

466. Parfenyuk, V.I. Surface potential at the gas-nonaqueous solution interface. Colloid J. 66, 466-469 (2004)

467. Case, B., Hush, N.S., Parsons, R. & Peover, M.E. The real solvation energies of hydrocarbon ions in acetonitrile and the surface potential of acetonitrile. J. Electroanal. Chem. 10, 360-370 (1965)

468. Harder, E. & Roux, B. On the origin of the electrostatic potential difference at a liquid-vacuum interface. J. Chem. Phys. 129, 234706/1-234706/9 (2008)

469. Patel, S. & Brooks III, C.L. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. J. Chem. Phys. 124, 204706/1-204706/14 (2006)

470. Brodskaya, E.N. & Zakharov, V.V. Computer simulation study of the surface polarization of pure polar liquids. J. Chem. Phys. 102, 4595-4599 (1995)

471. Wohlfahrt, C. Pure liquids: Data. In: Landolt-Börnstein. Numerical data and functional relationships in science and technology. Volume 6. Madelung, O., Ed. Springer, Berlin, Germany, pp 5-228 (1991)

472. Jorgensen, W.L. Optimized intermolecular potential functions for liquid alcohols. J. Phys. Chem. 90, 1276-1284 (1986)

473. Parsons, R. & Rubin, B.T. The medium effect for single ionic species. J. Chem. Soc. Faraday Trans. I 70, 1636-1648 (1974)

474. Rabalais, J.W., Werme, L.O., Bergmark, T., Karlsson, L., Hussain, M. & Siegbahn, K. Electron spectroscopy of open-shell systems: Spectra of Ni(C5H5)2, Fe(C5H5)2, Mn(C5H5)2, and Cr(C5H5)2. J. Chem. Phys. 57, 1185-1192 (1972)

475. Frumkin, A.N. Potentsialy Nulevogo Zaryada. Nauka, Moscow, Russia (1979)

476. Fomenko, V.S. Emissionnye svoistva materialov. Naukova Dumka, Kiev, Ukraine (1970)

477. Damaskin, B.B. & Kaganovich, R.I. The Volta potential at an electrode/solution interface at the zero-charge potential. Elektrokhimiya 13, 248-250 (1977)

478. Izmailov, N.A. Energy of solvation and persolvation (lg γ0) of individual ions in non-aqueous solutions. Dokl. Akad. Nauk. SSSR 149, 1364-1367 (1963)

479. Zagoruchenko, V.A. & Zhuravlev, A.M. Thermophysical properties of gaseous and liquid methane. Israel Program for Scientific Translations, Jerusalem, Israel (1970)

480. Patel, S. & Brooks III, C.L. Fluctuating charge force fields: recent developments and applications from small molecules to macromolecular biological systems. Mol. Simul. 32, 231-249 (2006)

481. Klauda, J.B., Brooks, B.R., MacKerrell, A.D., Venable, R.M. & Pastor, R.W. An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J. Phys. Chem. B 109, 5300-5311 (2005)

482. Reiss, H. & Heller, A. The absolute potential of the standard hydrogen electrode: A new estimate. J. Phys. Chem. 89, 4207-4213 (1985)

483. Isse, A.A. & Gennaro, A. Absolute potential of the standard hydrogen electrode and the problem of interconversion of potentials in different solvents. J. Phys. Chem. B 114, 7894-7899 (2010)

484. Csányi, G., Abaret, T., Moras, G., Payne, M.C. & de Vita, A. Multiscale hybrid simulation methods for material systems. J. Phys.: Condens. Matter 17, R691-R703 (2005)

485. Wang, C.Y. & Zhang, X. Multiscale modeling and related hybrid approaches. Curr. Opin. Solid State & Mat. Sci. 10, 2-14 (2006)

486. Sharma, S., Ding, F. & Dokholyan, N.V. Multiscale modeling of nucleosome dynamics. Biophys. J. 92, 1457-1470 (2007)

487. Berendsen, H.J.C. Simulating the physical world. Cambridge University Press, Cambridge, UK (2007)

488. Praprotnik, M., delle Site, L. & Kremer, K. Multiscale simulation of soft matter: From scale bridging to adaptive resolution. Ann. Rev. Phys. Chem. 59, 545-571 (2008)

489. Pandit, S.A. & Scott, H.L. Multiscale simulations of heterogeneous model membranes. Biochim. Biophys. Acta Biomembranes 1788, 136-148 (2009)

490. Allen, M.P. & Tildesley, D.J. Computer simulation of liquids. Oxford University Press, New York, USA (1987)

491. van Gunsteren W.F., Weiner, P.K., Wilkinson, Computer simulation of biomolecular systems: Theoretical and experimental applications. Volume 1. Escom Science Publ., Leiden, The Netherlands (1989)

492. van Gunsteren, W.F. & Berendsen, H.J.C. Computer simulation of molecular dynamics: Methodology, applications and perspectives in chemistry. Angew. Chem. Int. Ed. 29, 992-1023 (1990)

493. Lipkowitz, K.B. & Boyd, D.B. Reviews in computational chemistry. Volume 1. Wiley, New York, USA (1990)

494. Tomasi, J. & Persico, M. Molecular interactions in solution: An overview of methods based on continuous distributions of solvent. Chem. Rev. 94, 2027-2094 (1994)

495. Smith, P.E. & Pettitt, B.M. Modeling solvent in biomolecular systems. J. Phys. Chem. 98, 9700-9711 (1994)

496. Hünenberger, P.H. & van Gunsteren, W.F. Empirical classical interaction functions for molecular simulations. In: Computer simulation of biomolecular systems, theoretical and experimental applications. Volume 3. van Gunsteren, W.F., Weiner, P.K. & Wilkinson, A.J., Eds. Kluwer/Escom Science Publishers, Dordrecht, The Netherlands., pp 3-82. (1997)

497. Roux, B. & Simonson, T. Implicit solvent models. Biophys. Chem. 78, 1-20 (1999)

498. Baschnagel, J., Binder, K., Doruker, P., Gusev, A.A., Hahn, O., Kremer, K., Mattice, W.L., Müller-Plathe, F., Murat, M., Paul, W., Santos, S., Suter, U.W. & Tries, W. Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives. Adv. Polym. Sci. 152, 41-156 (2000)

499. Orozco, M. & Luque, F.J. Theoretical methods for the description of the solvent effect in biomolecular systems. Chem. Rev. 100, 4187-4225 (2000)

500. Leach, A. Molecular modelling: Principles and applications. Edition 2. Prentice Hall, New York, USA (2001)

501. Cremer, D., Kraka, E. & He, Y. Exact geometries from quantum chemical calculations. J. Mol. Struct. 567, 275-293 (2001)

502. Friesner, R.A. & Dunietz, B.D. Large-scale ab initio quantum chemical calculations on biological systems. Acc. Chem. Res. 34, 351-358 (2001)

503. Karplus, M. & McCammon, J.A. Molecular dynamics simulations of biomolecules. Nature Struct. Biol. 9, 646-652 (2002)

504. Frenkel, D. & Smit, B. Understanding molecular simulation. Edition 2. Academic Press, San Diego, USA (2002)

505. Schlick, T. Molecular modeling and simulation: An interdisciplinary guide. Springer, New York, USA (2002)

506. Briels, W.J. & Akkermans, R.L.C. Representation of coarse-grained potentials for polymer simulations. Mol. Simul. 28, 145-152 (2002)

507. Klopper, W. & Noga, J. Accurate quantum-chemical prediction of enthalpies of formation of small molecules in the gas phase. Chem. Phys. Chem. 4, 32-48 (2003)

508. Rapaport, D.C. The art of molecular dynamics simulation. Edition 2. Cambridge Univ. Press, Cambridge, UK (2004)

509. Cramer, C.J. Essentials of computational chemistry: Theories and models. Edition 2. John Wiley & Sons, Chichester, UK (2004)

510. Nielsen, S.O., Lopez, C.F., Srinivas, G. & Klein, M.L. Coarse grain models and the computer simulation of soft materials. J. Phys.: Condens. Matter 16, R481-R512 (2004)

511. Friesner, R.A. Ab initio quantum chemistry: Methodology and applications. Proc. Natl. Acad. Sci. USA 102, 6648-6653 (2005)

512. Tozzini, V. Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15, 144-150 (2005)

513. Baker, N.A. Improving implicit solvent simulations: a Poisson-centric view. Curr. Opin. Struct. Biol. 15, 137-143 (2005)

514. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999-3094 (2005)

515. van Gunsteren, W.F., Bakowies, D., Baron, R., Chandrasekhar, I, Christen, M., Daura, X., Gee, P., Geerke, D.P., Glättli, A., Hünenberger, P.H., Kastenholz, M.A., Oostenbrink, C., Schenk, M., Trzesniak, D., van der Vegt, N.F.A. & Yu, H.B. Biomolecular modelling: goals, problems, perspectives. Angew. Chem. Int. Ed. 45, 4064-4092 (2006)

516. Cavalli, A., Carloni, P. & Recanatini, M. Target-related applications of first principles quantum chemical methods in drug design. Chem. Rev. 106, 3497-3519 (2006)

517. Peters, M.B., Raha, K. & Merz, K.M. Quantum mechanics in structure-based drug design. Curr. Opin. Drug Discovery & Develop. 9, 370-379 (2006)

518. Müller, M., Katsov, K. & Schick, M. Biological and synthetic membranes: What can be learned from a coarse-grained description? Phys. Rep. 434, 113-176 (2006)

519. Bond, P.J., Holyoake, J., Ivetac, A., Khalid, S. & Sansom, M.S.P. Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J. Struct. Biol. 157, 593-605 (2007)

520. Scheraga, H.A., Khalili, M. & Liwo, A. Protein-folding dynamics: Overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 58, 57-83 (2007)

521. Bartlett, R.J. & Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291-352 (2007)

522. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P. & de Vries, A.H. The MARTINI force field: Coarse grained model for biomolecular simulations J. Phys. Chem. B 111, 7812-7824 (2007)

523. Jensen, F. Introduction to computational chemistry. Edition 2. John Wiley & Sons, Chichester, UK (2007)

524. Echenique, P. & Alonso, J.L. A mathematical and computational review of Hartree-Fock SCF methods in quantum chemistry. Mol. Phys. 105, 3057-3098 (2007)

525. Raha, K., Peters, M.B., Wang, B., Yu, N., Wollacott, A.M., Westerhoff, L.M. & Merz, K.M. The role of quantum mechanics in structure-based drug design. Drug Discovery Today 12, 725-731 (2007)

526. Wenjian, L. New advances in relativistic quantum chemistry. Prog. Chem. 19, 833-851 (2007)

527. Helgaker, T., Klopper, W. & Tew, D.P. Quantitative quantum chemistry. Mol. Phys. 106, 2107-2143 (2008)

528. Hu, H. & Yang, W.T. Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Ann. Rev. Phys. Chem. 59, 573-601 (2008)

529. Fabian, W.M.F. Accurate thermochemistry from quantum chemical calculations? Monatshefte f. Chemie 139, 309-318 (2008)

530. Voth, G.A. Coarse-graining of condensed phase and biomolecular systems. Taylor & Francis, Inc., New York, USA (2008)

531. Clementi, C. Coarse-grained models of protein folding: Toy models or predictive tools? Curr. Opin. Struct. Biol. 18, 10-15 (2008)

532. van Gunsteren, W.F., Huber, T. & Torda, A.E. Biomolecular modelling: overview of types of methods to search and sample conformational space. AIP Conf. Proc. 330, 253-268 (1995)

533. Berne, B.J. & Straub, J.E. Novel methods of sampling phase space in the simulation of biological systems. Curr. Opin. Struct. Biol. 7, 181-189 (1997)

534. Voter, A.F., Monatlenti, F. & Germann, T.C. Extending the time scale in atomistic simulations of materials. Annu. Rev. Mater. Res. 32, 321-46 (2002)

535. Tai, K. Conformational sampling for the impatient. Biophys. Chem. 107, 213-220 (2004)

536. van der Vaart, A. Simulation of conformational transitions. Theor. Chem. Acc. 116, 183-193 (2006)

537. Cancés, E., Legoll, F. & Stoltz, G. Theoretical and numerical comparison of some sampling methods for molecular dynamics. ESAIM: M2AN 41, 351-389 (2007)

538. Schettino, V., Chelli, R., Marsili, S., Barducci, A., Faralli, C., Pagliai, M., Procacci, P. & Cardini, G. Problems in molecular dynamics of condensed phases. Theor. Chem. Acc. 39, 265-273 (2007)

539. Gao, Y.Q., Yang, L., Fan, Y. & Shao, Q. Thermodynamics and kinetics simulations of multi-time-scale processes for complex systems. Int. Rev. Phys. Chem. 27, 201-227 (2008)

540. Christen, M. & van Gunsteren, W.F. On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: A review. J. Comput. Chem. 29, 157-166 (2008)

541. Hansen, H.S. & Hünenberger, P.H. Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water. J. Comput. Chem. 31, 1-23 (2010)

542. Hünenberger, P.H. Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci. 173, 105-149 (2005)

543. Micha, D.A. & Burghardt, I. (Eds.) Quantum dynamics of complex molecular systems. Volume 83. Springer series in chemical physics, Springer, Berlin, Germany (2007)

544. Marx, D. & Hutter, J. Ab initio molecular dynamics: Basic theory and advanced methods. Cambridge University Press, Cambridge, UK (2009)

545. Wesseling, P. Principles of computational fluid dynamics. Edition 1. Springer, Berlin, Germany (2000)

546. Valleau, J.P. & Whittington, S.G. A guide to Monte Carlo for statistical mechanics: 2. Byways. In: Modern theoretical chemistry. Volume 5. Berne, B.J., Ed. Plenum Press, New York, USA, pp 137-168 (1977)

547. Swendsen, R.H., Wang, J.S. & Ferrenberg, A.M. New Monte Carlo methods for improved efficiency of computer simulations in statistical mechanics. Topics Appl. Phys. 71, 75-91 (1992)

548. Frenkel, D. Monte Carlo simulations: A primer. In: Computer simulation of biomolecular systems, theoretical and experimental applications. Volume 2. van Gunsteren, W.F., Weiner, P.K. & Wilkinson, A.J., Eds. ESCOM Science Publishers, B.V., Leiden, The Netherlands., pp 37-66 (1993)

549. Binder, K., Baumgartner, A., Burkitt, A.N., Ceperley, D., Ferrenberg, A.M., Heermann, D.W., Herrmann, H.J., Landau, D.P., von der Linden, W., de Raedt, H., Schmidt, K.E., Selke, W., Stauffer, D. & Young, A.P. Recent developments in the Monte Carlo simulation of condensed matter. Topics Appl. Phys. 71, 385-410 (1995)

550. Peslherbe, G.H., Wang, H.B. & Hase, W.L. Monte Carlo sampling for classical trajectory simulations. Adv. Chem. Phys. 105, 171-201 (1999)

551. Siepmann, J.I. An introduction to the Monte Carlo method for particle simulations. Adv. Chem. Phys. 105, 1-12 (1999)

552. Newman, M.E.J. & Barkema, G.T. Monte Carlo methods in statistical physics. Edition 2. Oxford University Press, Oxford, UK (2001)

553. van Gunsteren, W.F. & Berendsen, H.J.C. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 34, 1311-1327 (1977)

554. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H.J.C. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327-341 (1977)

555. Andersen, H.C. Rattle : A "velocity" version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24-34 (1983)

556. Miyamoto, S. & Kollman, P.A. SETTLE : An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952-962 (1992)

557. Hess, B., Bekker, H., Berendsen, H.J.C. & Fraaije, J.G.E.M. LINCS : A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463-1472 (1997)

558. Kräutler, V., van Gunsteren, W.F. & Hünenberger, P.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 22, 501-508 (2001)

559. Christen, M & van Gunsteren, W.F. An approximate but fast method to impose flexible distance constraints in molecular dynamics simulations. J. Chem. Phys. 122, 144106/1-144106/12 (2005)

560. Tobias, D.J. & Brooks III, C.L. Molecular dynamics with internal coordinate constraints. J. Chem. Phys. 89, 5115-5127 (1988)

561. Schlitter, J., Engels, M., Krüger, P., Jacoby, E. & Wollmer, A. Targeted molecular dynamics simulation of conformational change. Application to the T-R transition in insulin. Mol. Simul. 10, 291-308 (1993)

562. Heinz, T.N., van Gunsteren, W.F. & Hünenberger, P.H. Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations. J. Chem. Phys. 115, 1125-1136 (2001)

563. Kastenholz, M.A., Schwartz, T.U. & Hünenberger, P.H. The transition between the B and Z conformations of DNA investigated by targeted molecular dynamics simulations with explicit solvation. Biophys. J. 91, 2976-2990 (2006)

564. Bekker, H. Unification of box shapes in molecular simulations. J. Comput. Chem. 18, 1930-1942 (1997)

565. Petraglio, G., Ceccarelli, M. & Parrinello, M. Nonperiodic boundary conditions for solvated systems. J. Chem. Phys. 123, 044103/1-044103/7 (2005)

566. Riihimäki, E.-S., Martínez, J.M. & Kloo, L. An evaluation of non-periodic boundary condition models in molecular dynamics simulations using prion octapeptides as probes. J. Mol. Struct. (Theochem) 760, 91-98 (2006)

567. Hünenberger, P.H. Calculation of the group-based pressure in molecular simulations. I. A general formulation including Ewald and particle-particle--particle-mesh electrostatics. J. Chem. Phys. 116, 6880-6897 (2002)

568. Woodcock, L.V. Isothermal molecular dynamics calculations for liquid salts. Chem. Phys. Lett. 10, 257-261 (1971)

569. Hoover, W.G., Ladd, A.J.C. & Moran, B. High-strain-rate plastic flow studied via nonequilibrium molecular dynamics. Phys. Rev. Lett. 48, 1818-1820 (1982)

570. Evans, D.J. Computer “experiment” for nonlinear thermodynamics of Couette flow. J. Chem. Phys. 78, 3297-3302 (1983)

571. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., di Nola, A. & Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684-3690 (1984)

572. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255-268 (1984)

573. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511-519 (1984)

574. Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695-1697 (1985)

575. Martyna, G.J., Klein, M.L. & Tuckerman, M. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635-2643 (1992)

576. Laird, B.B. & Leimkuhler, B.J. Generalized dynamical thermostating technique. Phys. Rev. E 68, 016704/1-016704/6 (2003)

577. Creutz, M. Microcanonical Monte Carlo simulations. Phys. Rev. Lett. 50, 1411-1414 (1983)

578. Ray, J.R. Microcanonical ensemble Monte Carlo method. Phys. Rev. A 44, 4061-4064 (1991)

579. Lustig, R. Microcanonical Monte Carlo simulation of thermodynamic properties. J. Chem. Phys. 109, 8816-8828 (1998)

580. Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384-2393 (1980)

581. Parrinello, M. & Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196-1199 (1980)

582. Parrinello, M. & Rahman, A. Strain fluctuations and elastic constants. J. Phys. Chem. 76, 2662-2666 (1982)

583. Grünwald, M. & Dellago, C. Ideal gas pressure bath: a method for applying hydrostatic pressure in the computer simulation of nanoparticles. Mol. Phys. 104, 3709-3715 (2006)

584. Grünwald, M., Dellago, C. & Geissler, P.L. An efficient transition path sampling algorithm for nanoparticles under pressure. J. Chem. Phys. 127, 154718/1-154718/10 (2007)

585. McDonald, I.R. Monte Carlo calculations for one- and two-component fluids in the isothermal-isobaric ensemble. Chem. Phys. Lett. 3, 241-243 (1969)

586. Wood, W.W. NPT-ensemble Monte Carlo calculations for hard-disk fluid. J. Chem. Phys. 52, 729-741 (1970)

587. King, H.F. Isobaric versus canonical ensemble formalism for Monte Carlo studies of liquids. J. Chem. Phys. 57, 1837-1841 (1972)

588. McDonald, I.R. NPT-ensemble Monte Carlo calculations for binary liquid mixtures. Mol. Phys. 23, 41-58 (1972)

589. Owicki, J.C. & Scheraga, H.A. Monte Carlo calculations in isothermal-isobaric ensemble. 1. Liquid water. J. Am. Chem. Soc. 99, 7403-7412 (1977)

590. Escobedo, F.A. & Depablo, J.J. A new method for generating volume changes in isobaric-isothermal Monte Carlo simulations of flexible molecules. Macromol. Theory Simul. 4, 691-707 (1995)

591. Brennan, J.K. & Madden, W.G. Efficient volume changes in constant-pressure Monte Carlo simulations. Mol. Simul. 20, 139-157 (1998)

592. Chesnut, D.A. & Salsburg, Z.W. Monte Carlo procedure for statistical mechanical calculations in a grand canonical ensemble of lattice systems. J. Chem. Phys. 38, 2861-2870 (1963)

593. Çaǧin, T. & Pettitt, B.M. Molecular dynamics with a variable number of molecules. Mol. Phys. 72, 169-175 (1991)

594. Ji, J., Çaǧin, T. & Pettitt, B.M. Dynamic simulations of water at constant chemical potential. J. Chem. Phys. 96, 1333-1342 (1992)

595. Beutler, T.C. & van Gunsteren, W.F. Molecular dynamics simulations with first order coupling to a bath of constant chemical potential. Mol. Simul. 14, 21-34 (1994)

596. Lo, C. & Palmer, B. Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble. J. Chem. Phys. 102, 925-931 (1995)

597. Lynch, G.C. & Pettitt, B.M. Grand canonical ensemble molecular dynamics simulations: Reformulation of extended system dynamics approaches. J. Chem. Phys. 107, 8594-8610 (1997)

598. Marrone, T.J., Resat, H., Hodge, N., Chang, C.-H. & McCammon, J.A. Solvation studies of DMP323 and A76928 bound to HIV protease: Analysis of water sites using grand canonical Monte Carlo simulations. Protein Science 7, 573-579 (1998)

599. Börjesson, U. & Hünenberger, P.H. Explicit-solvent molecular simulation at constant pH: Methodology and application to small amines. J. Chem. Phys. 114, 9706-9719 (2001)

600. Bürgi, R., Kollman, P.A. & van Gunsteren, W.F. Simulating proteins at constant pH: An approach combining molecular dynamics and Monte Carlo simulation. Proteins 47, 469-480 (2002)

601. Adams, D.J. Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid. Mol. Phys. 29, 307-311 (1975)

602. von Lilienfeld, O.A. & Tuckerman, M.E. Molecular grand-canonical ensemble density functional theory and exploration of chemical space. J. Chem. Phys. 125, 154104/1-154104/10 (2006)

603. Deng, Y. & Roux, B. Computation of binding free energy with molecular dynamics and grand canonical MC simulations. J. Chem. Phys. 128, 115103/1-115103/8 (2008)

604. van Gunsteren, W.F., Nanzer, A.P. & Torda, A.E. Molecular simulation methods for generating ensembles or trajectories consistent with experimental data. In: Monte Carlo and molecular dynamics of condensed matter systems, Proceedings of the Euroconference, 3-28 July 1995, Como, Italy. Volume 49. Binder, K. & Ciccotti, G., Eds. SIF, Bologna, Italy., pp 777-788 (1996)

605. van Gunsteren, W.F., Dolenc, J. & Mark, A.E. Molecular simulation as an aid to experimentalists. Curr. Opin. Struct. Biol. 18, 149-153 (2008)

606. de Vlieg, J., Boelens, R., Scheek, R.M., Kaptein, R. & van Gunsteren, W.F. Restrained molecular dynamics procedure for protein tertiary structure determination from NMR data: A Lac repressor headpiece structure based on information on J-coupling and from presence and absence of NOE's. Isr. J. Chem. 27, 181-188 (1986)

607. Gros, P., van Gunsteren, W.F. & Hol, W.G.J. Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics. Science 249, 1149-1152 (1990)

608. Gros, P. & van Gunsteren, W.F. Crystallographic refinement and structure-factor time-averaging by molecular dynamics in the absence of a physical force field. Mol. Simul. 10, 377-395 (1993)

609. van Gunsteren, W.F., Brunne, R.M., Gros, P., van Schaik, R.C., Schiffer, C.A. & Torda, A.E. Accounting for molecular mobility in structure determination based on nuclear magnetic resonance spectroscopic and X-ray diffraction data. In: Methods in enzymology: nuclear magnetic resonance. Volume 239. James, T.L. & Oppenheimer, N.J., Eds. Academic Press, New York, USA, pp 619-654 (1994)

610. Schiffer, C.A., Gros, P. & van Gunsteren, W.F. Time-averaging crystallographic refinement: Possibilities and limitations using α-cyclodextrin as a test system. Acta Crystallogr. D 51, 85-92 (1995)

611. van Gunsteren, W.F., Kaptein, R. & Zuiderweg, E.R.P. Use of molecular dynamics computer simulations when determining protein structure by 2D NMR. In: Proceedings NATO/CECAM workshop on nucleic acid conformation and dynamics. Olson, W.K., Ed. Orsay, CECAM, France., pp 79-92 (1984)

612. Zuiderweg, E.R.P., Scheek, R.M., Boelens, R., van Gunsteren, W.F. & Kaptein, R. Determination of protein structures from nuclear magnetic resonance data using a restrained molecular dynamics approach: The lac repressor DNA binding domain. Biochimie 67, 707-715 (1985)

613. Kaptein, R., Zuiderweg, E.R.P., Scheek, R.M., Boelens, R. & van Gunsteren, W.F. A protein structure from nuclear magnetic resonance data: lac repressor headpiece. J. Mol. Biol. 182, 179-182 (1985)

614. Torda, A.E., Scheek, R.M. & van Gunsteren, W.F. Time-dependent distance restraints in molecular dynamics simulations. Chem. Phys. Lett. 157, 289-294 (1989)

615. Torda, A.E., Scheek, R.M. & van Gunsteren, W.F. Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. J. Mol. Biol. 214, 223-235 (1990)

616. Torda, A.E., Brunne, R.M., Huber, T., Kessler, H. & van Gunsteren, W.F. Structure refinement using time-averaged J-coupling constant restraints. J. Biomol. NMR 3, 55-66 (1993)

617. Keller, B., Christen, M., Oostenbrink, C. & van Gunsteren, W.F. On using oscillating time-dependent restraints in MD simulation. J. Biomol. NMR. 34, 1-14 (2007)

618. Christen, M., Keller, B. & van Gunsteren, W.F. Biomolecular structure refinement based on adaptive restraints using local-elevation simulation. J. Biomol. NMR 39, 265-273 (2007)

619. Beveridge, D.L. & DiCapua, F.M. Free energy via molecular simulation: Applications to chemical and biomolecular systems. Annu. Rev. Biophys. Biophys. Chem. 18, 431-492 (1989)

620. King, P.M. Free energy via molecular simulation : A primer. In: Computer simulation of biomolecular systems, theoretical and experimental applications. Volume 2. van Gunsteren, W.F., Weiner, P.K. & Wilkinson, A.J., Eds. ESCOM Science Publishers, B.V., Leiden, The Netherlands., pp 267-314 (1993)

621. Kollman, P. Free energy calculations: Applications to chemical and biochemical phenomena. Chem. Rev. 93, 2395-2417 (1993)

622. van Gunsteren, W.F., Beutler, T.C., Fraternali, F., King, P.M., Mark, A.E. & Smith, P.E. Computation of free energy in practice : Choice of approximations and accuracy limiting factors. In: Computer simulation of biomolecular systems, theoretical and experimental applications. Volume 2. van Gunsteren, W.F., Weiner, P.K. & Wilkinson, A.J., Eds. ESCOM Science Publishers, B.V., Leiden, The Netherlands., pp 315-367 (1993)

623. Straatsma, T.P. Free energy by molecular simulation. In: Reviews in computational chemistry. Volume 9. Lipkowitz, K.B. & Boyd, D.B., Eds. VCH Publishers Inc., New York, USA, pp 81-127 (1996)

624. Mark, A.E., Xu, Y., Liu, H. & van Gunsteren, W.F. Rapid non-empirical approaches for estimating relative binding free energies. Acta Biochim. Pol. 42, 525-536 (1995)

625. Liu, H., Mark, A.E. & van Gunsteren, W.F. Estimating the relative free energy of different molecular states with respect to a single reference state. J. Phys. Chem. 100, 9485-9494 (1996)

626. Schäfer, H., van Gunsteren, W.F. & Mark, A.E. Estimating relative free energies from a single ensemble: Hydration free energies. J. Comput. Chem. 20, 1604-1617 (1999)

627. Pitera, J.W. & van Gunsteren, W.F. One-step perturbation methods for solvation free energies of polar solutes. J. Phys. Chem. 105, 11264-11274 (2001)

628. Kirkwood, J.G. Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300-313 (1935)

629. Zwanzig, R.W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 22, 1420-1426 (1954)

630. Kong, X. & Brooks III, C.L. λ-dynamics: A new approach to free energy calculations. J. Chem. Phys. 105, 2414-2423 (1996)

631. Guo, Z., Brooks III, C.L. & Kong, X. Efficient and flexible algorithm for free energy calculations using the λ-dynamics approach. J. Phys. Chem. B 102, 2032-2036 (1998)

632. Christ, C.D. & van Gunsteren, W.F. Enveloping distribution sampling: A method to calculate free energy differences from a single simulation. J. Chem. Phys. 126, 184110/1-184110/10 (2007)

633. Christ, C.D. & van Gunsteren, W.F. Multiple free energies from a single simulation: Extending enveloping distribution sampling to nonoverlapping phase-space distributions. J. Chem. Phys. 128, 174112/1-174112/12 (2008)

634. Christ, C.D. & van Gunsteren, W.F. Simple, efficient, and reliable computation of multiple free energy differences from a single simulation: a reference Hamiltonian parameter update scheme for enveloping distribution sampling (EDS). J. Chem. Theory Comput. 5, 276-286 (2009)

635. Christ, C.D. & van Gunsteren, W.F. Comparison of three enveloping distribution sampling Hamiltonians for the estimation of multiple free energy differences from a single simulation. J. Comput. Chem. 30, 1664-1679 (2009)

636. Fukunishi, H., Watanabe, O. & Takada, S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. J. Chem. Phys. 116, 9058-9067 (2002)

637. Piana, S. Atomistic simulation of the DNA helix-coil transition. J. Phys. Chem. A 111, 12349-12354 (2007)

638. Piana, S. & Laio, A. A bias-exchange approach to protein folding. J. Phys. Chem. B 111, 4553-4559 (2007)

639. Kannan, S. & Zacharias, M. Enhanced sampling of peptide and protein conformations using replica exchange simulations with a peptide backbone biasing-potential. Proteins: Struct. Funct. Bioinf. 66, 697-706 (2007)

640. Min, D., Li, H., Li, G., Bitetti-Putzer, R. & Yang, W. Synergistic approach to improve alchemical free energy calculation in rugged energy surface. J. Chem. Phys. 126, 144109/1-144109/12 (2007)

641. Babin, V., Roland, C. & Sagui, C. Adaptively biased molecular dynamics for free energy calculations. J. Chem. Phys. 128, 134101/1-134101/7 (2008)

642. Hritz, J. & Oostenbrink, C. Hamiltonian replica exchange molecular dynamics using soft-core interactions. J. Chem. Phys. 128, 144121/1-144121/10 (2008)

643. Bernal, J.D. & Fowler, R.H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515-547 (1933)

644. Eley, D.D. & Evans, M.G. Heats and entropy changes accompanying the solution of ions in water. Trans. Farad. Soc. 38, 1093-1112 (1938)

645. Verwey, E.J.W. The charge distribution in the water molecule and the calculation of the intermolecular forces. Rec. Trav. Chim. Pays-Bas 60, 887-896 (1941)

646. Verwey, E.J.W. The interaction of ion and solvent in aqueous solutions of electrolytes. Rec. Trav. Chim. 61, 127-142 (1942)

647. Born, M. & Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 389, 457-484 (1927)

648. Marx, D. & Hutter, J. Ab initio molecular dynamics: Theory and implementation. In: Modern methods and algorithms of quantum chemistry. Volume 3. Grotendorst, J., Ed. John von Neumann Institute for Computing, Jülich, Germany; NIC Series, pp 329-477 (2000)

649. Sherwood, P. Hybrid quantum mechanics/molecular mechanics approaches. In: Modern methods and algorithms of quantum chemistry. Volume 3. Grotendorst, J., Ed. John von Neumann Institute for Computing, Jülich, Germany; NIC Series, pp 285-305 (2000)

650. Warshel, A. & Karplus, M. Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization. J. Am. Chem. Soc. 94, 5612-5625 (1972)

651. Maxwell, J.C. A dynamical theory of the electromagnetic field. Phil. Trans. Roy. Soc. London 155, 459-512 (1865)

652. Maxwell, J.C. A treatise on electricity and magnetism. Volume 1. Edition 3. Clarendon Press, Oxford, UK (reprinted by Dover, New York, USA in 1954) (1891)

653. Maxwell, J.C. A treatise on electricity and magnetism. Volume 2. Edition 3. Clarendon Press, Oxford, UK (reprinted by Dover, New York, USA in 1954) (1891)

654. Poisson, S.D. Remarques sur une équation qui se présente dans la théorie des attractions des sphéroides. Nouveau bulletin des sciences par la Société Philomatique de Paris 3, 388-392 (1813)

655. Yu, H. & Karplus, M. A thermodynamic analysis of solvation. J. Chem. Phys. 89, 2366-2379 (1988)

656. Guillot, B. & Guissani, Y. A computer simulation study of the temperature dependence of the hydrophobic hydration. J. Chem. Phys. 99, 8075-8094 (1993)

657. Gallicchio, E., Kubo, M.M. & Levy, R.M. Enthalpy-entropy and cavity decomposition of alkane hydration free energies: Numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B 104, 6271-6285 (2000)

658. van der Vegt, N.F.A. & van Gunsteren, W.F. Entropic contributions in cosolvent binding to hydrophobic solutes in water. J. Phys. Chem. B 108, 1056-1064 (2004)

659. van der Vegt, N.F.A., Trzesniak, D., Kasumaj, B. & van Gunsteren, W.F. Energy-entropy compensation in the transfer of nonpolar solutes from water to co-solvent/water mixtures. Chem. Phys. Chem. 5, 144-147 (2004)

660. Stokes, R.H. The van der Waals radii of gaseous ions of the noble gas structure in relation to hydration energies. J. Am. Chem. Soc. 86, 979-982 (1964)

661. Millen, W.A. & Watts, D.W. Theoretical calculations of thermodynamic functions of solvation of ions. J. Am. Chem. Soc. 89, 6051-6056 (1967)

662. Abraham, M.H. & Liszi, J. Calculations on ionic solvation. Part 1. Free energies of solvation of gaseous univalent ions using a one-layer continuum model. J. Chem. Soc. Faraday Trans. 74, 1604-1614 (1978)

663. Abraham, M.H. & Liszi, J. Calculations on ionic solvation. Part 2. Entropies of solvation of gaseous univalent ions using a one-layer continuum model. J. Chem. Soc. Faraday Trans. 74, 2858-2867 (1978)

664. Abraham, M.H. & Liszi, J. Calculations on ionic solvation. Part 4. Further calculations in solvation of gaseous univalent ions using one-layer and two-layer continuum models. J. Chem. Soc. Faraday Trans. 76, 1219-1231 (1980)

665. Abraham, M.H., Matteoli, E. & Liszi, J. Calculation of the thermodynamics of solvation of gaseous univalent ions in water from 273 to 573 K. J. Chem. Soc. Faraday Trans. 1 79, 2781-2800 (1983)

666. Ehrenson, S. Continuum radial dielectric functions for ion and dipole solution systems. J. Comp. Chem. 10, 77-93 (1989)

667. Lahiri, S.C. Calculation of Gibbs energies of hydration of monovalent ions: Examination of Born equation and its reevaluation. Z. Phys. Chem. 214, 27-44 (2000)

668. Lahiri, S.C. Determination of Gibbs energies of solvation of monovalent ions in water, methanol and ethanol and re-evaluation of the interaction energies. Z. Phys. Chem. 217, 13-33 (2003)

669. Uhlig, H.H. The solubilities of gases and surface tension. J. Phys. Chem. 41, 1215-1225 (1937)

670. Kirkwood, J.G. Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys. 2, 351-361 (1934)

671. Onsager, L. Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486-1493 (1936)

672. Harrison, S.W., Nolte, H.J. & Beveridge, D.L. Free energy of a charge distribution in a spheroidal cavity in a polarizable dielectric continuum. J. Phys. Chem. 80, 2580-2585 (1976)

673. Gersten, J.I. & Sapse, A.M. Electrostatic effect's influence on some amines' basicity. J. Phys. Chem. 85, 3407-3409 (1981)

674. Gersten, J.I. & Sapse, A.M. Solvent-effect investigations through the use of an extended Born equation. J. Comp. Chem. 6, 481-485 (1985)

675. Gomez-Jeria, J.S. & Morales-Lagos, D. Free energy of a charge distribution in a spheroidal cavity surrounded by concentric dielectric continua. J. Phys. Chem. 94, 3790-3795 (1990)

676. Abe, T. A further modification of the Born equation. Bull. Chem. Soc. Jpn. 64, 3035-3038 (1991)

677. Ehrenson, S. Transmission of substituent effects. Generalization of the ellipsoidal cavity field effect model. J. Am. Chem. Soc. 98, 7510-7514 (1976)

678. Dillet, V., Rinaldi, D. & Rivail, J.-L. Liquid-state quantum chemistry: An improved cavity model. J. Phys. Chem. 98, 5034-5039 (1994)

679. Buckingham, A.D. The application of Onsager's theory to spheroidal molecules. Trans. Faraday Soc. 49, 881-886 (1953)

680. Gersten, J.I. & Sapse, A.M. Generalization of the Born equation to nonspherical solvent cavities. J. Am. Chem. Soc. 107, 3786-3788 (1985)

681. Onsager, L. Electrostatic interaction of molecules. J. Phys. Chem. 43, 189-196 (1939)

682. Warwicker, J. & Watson, H.C. Calculation of the electric potential in the active site cleft due to α-helix dipoles. J. Mol. Biol. 157, 671-679 (1982)

683. Gilson, M.K. & Honig, B. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins: Struct. Funct. Genet. 4, 7-18 (1988)

684. Bashford, D. & Karplus, M. pKa's of ionizable groups in proteins: Atomic detail from a continuum electrostatic model. Biochemistry 29, 10219-10225 (1990)

685. Bashford, D. & Karplus, M. Multiple-site titration curve of proteins: An analysis of exact and approximate methods for their calculation. J. Phys. Chem. 95, 9556-9561 (1991)

686. Davis, M.E., Madura, J.D., Luty, B.A. & McCammon, J.A. Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian dynamics program. Comput. Phys. Commun. 62, 187-197 (1991)

687. Sharp, K.A. Incorporating solvent and ion screening into molecular dynamics using the finite-difference Poisson-Boltzmann method. J. Comput. Chem. 12, 454-468 (1991)

688. Zauhar, R.J. The incorporation of hydration forces determined by continuum electrostatics into molecular mechanics simulations. J. Comput. Chem. 12, 575-583 (1991)

689. Gilson, M.K., Davis, M.E., Luty, B.A. & McCammon, J.A. Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation. J. Phys. Chem. 97, 3591-3600 (1993)

690. Yang, A.-S. & Honig, B. On the pH dependence of protein stability. J. Mol. Biol. 231, 459-474 (1993)

691. Yang, A.-S., Gunner, M.R., Sampogna, R., Sharp, K. & Honig, B. On the calculation of pKa's in proteins. Proteins: Struct. Funct. Genet. 15, 252-265 (1993)

692. Sitkoff, D., Sharp, K.A. & Honig, B. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98, 1978-1988 (1994)

693. Madura, J.D., Davis, M.E., Gilson, M.K., Wade, R.C., Luty, B.A. & McCammon, J.A. Biological applications of electrostatic calculations and Brownian dynamics simulations. In: Reviews in computational chemistry. Volume 4. Lipkowitz, K.B. & Boyd, D.B., Eds. VCH Publishers Inc., New York, USA, pp 229-267 (1994)

694. Antosiewicz, J., McCammon, J.A. & Gilson, M.K. Prediction of pH-dependent properties of proteins. J. Mol. Biol. 238, 415-436 (1994)

695. Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Luty, B.A., Ilin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.R. & McCammon, J.A. Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput. Phys. Commun. 91, 57-95 (1995)

696. Honig, B. & Nicholls, A. Classical electrostatics in biology and chemistry. Science 268, 1144-1149 (1995)

697. Gilson, M.K., McCammon, J.A. & Madura, J.D. Molecular dynamics simulation with a continuum electrostatic model of the solvent. J. Comput. Chem. 16, 1081-1095 (1995)

698. Simonson, T. Macromolecular electrostatics: Continuum models and their growing pains. Curr. Opin. Struct. Biol. 11, 243-252 (2001)

699. Wang, J., Tan, C.H., Tan, Y.H., Lu, Q. & Luo, R. Poisson-Boltzmann solvents in molecular dynamics simulations. Comm. Comp. Phys. 3, 1010-1031 (2008)

700. Lu, B.Z., Zhou, Y.C., Holst, M.J. & McCammon, J.A. Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications. Comm. Comp. Phys. 3, 973-1009 (2008)

701. Tjong, H. & Zhou, H.X. On the dielectric boundary in Poisson-Boltzmann calculations. J. Chem. Theory Comput. 4, 507-514 (2008)

702. Grochowski, P. & Trylska, J. Continuum molecular electrostatics, salt effects, and counterion binding. A review of the Poisson-Boltzmann theory and its modifications. Biopolymers 89, 93-113 (2008)

703. Kolafa, J., Moučka, F. & Nezbeda, I. Handling electrostatic interactions in molecular simulations: A systematic study. Collect. Czech. Chem. Commun. 73, 481-506 (2008)

704. Still, W.C., Tempczyk, A., Hawley, R.C. & Hendrickson, T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127-6129 (1990)

705. Bashford, D. & Case, D.A. Generalized Born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 51, 129-152 (2000)

706. Chen, J.H., Brooks, C.L. & Khandogin, J. Recent advances in implicit solvent-based methods for biomolecular simulations. Curr. Opin. Struct. Biol. 18, 140-148 (2008)

707. Kastenholz, M.A. & Hünenberger, P.H. Computation of methodology-independent ionic solvation free energies from molecular simulations: I. The electrostatic potential in molecular liquids. J. Chem. Phys. 124, 124106/1-124106/27 (2006)

708. Ashbaugh, H.S. & Wood, R.H. Effects of long-range electrostatic potential truncation on the free energy of ionic hydration. J. Chem. Phys. 106, 8135-8139 (1997)

709. Fajans, K. Deformation von Ionen und Molekeln auf Grund refraktometrischer Daten. Z. Elektrochem. 34, 503-520 (1928)

710. Hepler, L.G. Partial molal volumes of aqueous ions. J. Phys. Chem. 61, 1426-1429 (1957)

711. Stokes, R.H. Crystal lattice energies and the electrostatic self-energies of gaseous ions. J. Am. Chem. Soc. 86, 982-986 (1964)

712. Goldman, S. & Bates, R.G. Calculation of thermodynamic functions for ionic hydration. J. Am. Chem. Soc. 94, 1476-1784 (1972)

713. Goldman, S. & Morss, L.R. Semiempirical calculations on free energy and enthalpy of hydration for trivalent lanthanides and actinides. Can. J. Chem. - Rev. Can. Chim. 53, 2695-2700 (1975)

714. Conway, B.E. Factors limiting applications of the historically significant Born equation: A critical review. In: Modern Aspects of Electrochemistry. Volume 35. R.E. White, B.E. Conway, Ed. Kluwer Academic/Plenum Publishers, New York, USA, pp 295-323 (2002)

715. Qureshi, P.M. & Varshney, R.K. A very simple empirical modification of the Born equation. J. Chem. Edu. 66, 641-643 (1989)

716. Boström, M. & Ninham, B.W. Contributions from dispersion and Born self-free energies to the solvation energies of salt solutions. J. Phys. Chem. 108, 12593-12595 (2004)

717. Buckingham, A.D. A theory of ion-solvent interaction. Disc. Faraday Soc. 24, 151-157 (1957)

718. Muirhead, J.S. & Laidler, K.J. Discontinuous model for hydration of monatomic ions. Trans. Faraday Soc. 63, 944-952 (1967)

719. London, F. Über einige Eigenschaften und Anwendungen der Molekularkräfte. Z. Phys. Chem. B 11, 222-251 (1930)

720. Eisenchitz, R. & London, F. Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften. Z. Phys. 60, 491-477 (1930)

721. London, F. The general theory of molecular forces. Trans. Faraday Soc. 33, 8-26 (1937)

722. Drude, P. The theory of optics. Longmans and Green, New York, USA (1901)

723. Rigby, M., Smith, E.B., Wakeham, W.A. & Maitland, G.C. The forces between molecules. Clarendon Press, Oxford, UK (1986)

724. Stone, A.J. The theory of intermolecular forces. Oxford Univ. Press, Oxford, UK (2000)

725. Unsöld, A. Beiträge zur Quantenmechanik der Atome. Ann. Phys. 387, 355-393 (1927)

726. Slater, J.C. & Kirkwood, J.G. The van der Waals forces in gases. Phys. Rev. 37, 682-697 (1931)

727. Pauling, L. The theoretical prediction of the physical properties of many-electron atoms and ions. Mole refraction, diamagnetic susceptibility, and extension in space. Proc. Roy. Soc. London A 114, 181-211 (1927)

728. Drude, P. & Nernst, W. Über Elektrostriktion durch freie Ionen. Z. Phys. Chem. 15, 79-85 (1894)

729. Gyemant, A. Die Hydration der Ionen. Z. Phys. 30, 240-252 (1924)

730. Webb, T.J. The free energy of hydration of ions and the electrostriction of the solvent. J. Am. Chem. Soc. 48, 2589-2603 (1926)

731. Webb, T.J. On the free energy of hydration of ions. Proc. Natl. Acad. Sci. USA 8, 524-529 (1926)

732. Zwicky, F. Zur Theorie der spezifischen Wärme von Lösungen. Phys. Z. 27, 271-287 (1926)

733. Latimer, W.M. & Kasper, C. The theoretical evaluation of the entropies of aqueous ions. J. Am. Chem. Soc. 51, 2293-2299 (1929)

734. Haggis, G.H., Hasted, J.B. & Buchanan, T.J. The dielectric properties of water in solutions. J. Chem. Phys. 20, 1452-1465 (1952)

735. Frank, H.S. Thermodynamics of a fluid substance in the electrostatic field. J. Chem. Phys. 23, 2023-2032 (1955)

736. Mukerjee, P. On ion-solvent interactions. Part I. Partial molal volumes of ions in aqueous solution. J. Phys. Chem. 65, 740-744 (1961)

737. Padova, J. Ion-solvent interaction. II. Partial molar volume and electrostriction: a thermodynamic approach. J. Chem. Phys. 39, 1552-1557 (1963)

738. Benson, S.W. & Copeland, C.S. Partial molar volumes of ions. J. Phys. Chem. 67, 1194-1197 (1963)

739. Desnoyers, J.E., Verrall, R.E. & Conway, B.E. Electrostriction in aqueous solutions of electrolytes. J. Chem. Phys. 43, 243-250 (1965)

740. Mukerjee, P. Ionic partial molal volumes and electrostrictions in aqueous solution. J. Phys. Chem. 70, 2708-2708 (1966)

741. Padova, J.I. Ion solvent interaction. VIII. Thermodynamic properties of ions in methanol solution. J. Chem. Phys. 56, 1606-1610 (1972)

742. Wood, R.H., Quint, J.R. & Grolier, J.-P.E. Thermodynamics of a charged hard sphere in a compressible dielectric fluid. A modification of the Born equation to include the compressibility of the solvent. J. Phys. Chem. 85, 3944-3949 (1981)

743. Jayaryam, B., Fine, R., Sharp, K. & Honig, B. Free energy calculations of ion hydration: An analysis of the Born model in terms of microscopic simulations. J. Phys. Chem. 93, 4320-4327 (1989)

744. Hyun, J.-K. & Ichiye, T. Nonlinear response in ionic solvation: A theoretical investigation. J. Chem. Phys. 109, 1074-1083 (1998)

745. Marcus, Y. & Hefter, G. On the pressure and electric field dependencies of the relative permittivity of liquids. J. Solut. Chem. 28, 575-592 (1999)

746. Danielewicz-Ferchmin, I. & Ferchmin, A.R. Ion hydration and large electrocaloric effect. J. Solut. Chem. 31, 81-96 (2002)

747. Hasted, J.B., Ritson, D.M. & Collie, C.H. Dielectric properties of aqueous ionic solutions. J. Chem. Phys. 16, 1-21 (1948)

748. Grahame, D.C. Effects of dielectric saturation upon the diffuse double layer and the free energy of hydration of ions. J. Chem. Phys. 18, 903-909 (1950)

749. Booth, F. The dielectric constant of water and the saturation effect. J. Chem. Phys. 19, 391-394 (1951)

750. Booth, F. Erratum to “The dielectric constant of water and the saturation effect” [J. Chem. Phys. 19, 391-394 (1951)]. J. Chem. Phys. 19, 1327-1328 (1951)

751. Booth, F. Erratum to “The dielectric constant of water and the saturation effect” [J. Chem. Phys. 19, 391-394 (1951)]. J. Chem. Phys. 19, 1615-1615 (1951)

752. Grahame, D.C. Diffuse double layer theory for electrolytes of unsymmetrical valence types. J. Chem. Phys. 21, 1054-1060 (1953)

753. Buckingham, A.D. Theory of the dielectric constant at high field strengths. J. Chem. Phys. 25, 428-434 (1956)

754. Laidler, K.J. & Pegis, C. The influence of dielectric saturation on the thermodynamic properties of aqueous ions. Proc. R. Soc. 248, 80-92 (1957)

755. Azzam, A.M. Theoretical studies on solvation. Part II. New theory for evaluation of ionic solvation number for divalent ions at 25°C. Can. J. Chem. 38, 993-1002 (1960)

756. Rosseinsky, D.R. Some factors affecting ion-pair formation in water. J. Chem. Soc. (Mar.), 785-791 (1962)

757. Conway, B.E., Desnoyers, J.E. & Smith, A.C. On the hydration of simple ions and polyions. Philos. Trans. R. Soc. London Series A 256, 389-437 (1964)

758. Glueckauf, E. Heats and entropies of ions in aqueous solution. Trans. Faraday Soc. 60, 572-577 (1964)

759. Laidler, K.J. & Muirhead-Gould, J.S. Continuous dielectric model for hydration of monatomic ions. Trans. Farad. Soc. 63, 953-957 (1967)

760. Beveridge, D.L. & Schnuelle, G.W. Free energy of a charge distribution in concentric dielectric continua. J. Phys. Chem. 79, 2562-2566 (1975)

761. Abraham, M.H., Liszi, J. & Mészáros, L. Calculations on ionic solvation. III. The electrostatic free energy of solvation of ions, using a multi-layered continuum model. J. Chem. Phys. 70, 2491-2496 (1979)

762. Stiles, P.J. Contributions from dielectric inhomogeneity to the free energy of ionic solvation. Aust. J. Chem. 33, 1389-1391 (1980)

763. Klugman, I.Y. Influence of electric saturation on the dielectric permittivity of electrolytes. Soviet Electrochemistry 17, 602-605 (1981)

764. Abe, T. A modification of the Born equation. J. Phys. Chem. 90, 713-715 (1986)

765. Bucher, M. & Porter, T.L. Analysis of the Born model for hydration of ions. J. Phys. Chem. 90, 3406-3411 (1986)

766. Ehrenson, S. Boundary continuity and analytical potentials in continuum solvent models. Implications for the Born model. J. Phys. Chem. 91, 1868-1873 (1987)

767. Alper, H.E. Field strength dependence of dielectric saturation in liquid water. J. Phys. Chem. 94, 8401-8403 (1990)

768. Kumar, A. A modified Born equation for solvation energy of ions. J. Phys. Chem. Soc. Jpn. 61, 4247-4250 (1992)

769. Bontha, J.R. & Pintauro, P.N. Prediction of ion solvation free-energies in a polarizable dielectric continuum. J. Phys. Chem. 96, 7778-7782 (1992)

770. Kim, H.-S. & Chung, J.-J. Free energy of ion hydration. Bull. Korean Chem. Soc. 14, 220-225 (1993)

771. Hyun, J.-K., Babu, C.S. & Ichiye, T. Apparent local dielectric response around ions in water: A method for its determination and its applications. J. Phys. Chem. 99, 5187-5195 (1995)

772. Sandberg, L. & Edholm, O. Nonlinear response effects in continuum models of the hydration of ions. J. Chem. Phys. 116, 2936-2944 (2002)

773. Gavryushow, S. & Linse, P. Polarization deficiency and excess free energy of ion hydration in electric fields. J. Phys. Chem. B 107, 7135-7142 (2003)

774. Gong, H., Hocky, G. & Freed, K.F. Influence of nonlinear electrostatics on transfer energies between liquid phases: Charge burial is far less expensive than Born model. Proc. Natl. Acad. Sci. USA 105, 11146-11151 (2008)

775. Frank, H.S. & Wen, W.-Y. Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure. Discuss. Farad. Soc. 24, 133-140 (1957)

776. Hirata, F., Redfern, P. & Levy, R.M. Viewing the Born model for ion hydration through a microscope. Int. J. Quant. Chem. 15, 179-190 (1988)

777. Kumar, A. Surface effects in the Born solvation model. Bull. Chem. Soc. Jpn. 67, 3150-3152 (1994)

778. Babu, C.S. & Lim, C. Theory of ionic hydration: Insights from molecular dynamics simulations and experiment. J. Phys. Chem. B 103, 7958-7968 (1999)

779. Babu, C.S. & Lim, C. A new interpretation of the effective Born radius from simulations and experiment. Chem. Phys. Lett. 310, 225-228 (1999)

780. Ashbaugh, H.S. Convergence of molecular and macroscopic continuum descriptions of ion hydration. J. Phys. Chem. B 104, 7235-7238 (2000)

781. Babu, C.S. & Lim, C. Incorporating nonlinear solvent response in continuum dielectric models using a two-sphere description of the Born radius. J. Phys. Chem. A 105, 5030-5036 (2001)

782. Hinton, J.F. & Amis, E.S. Solvation numbers of ions. Chem. Rev. 71, 627-674 (1971)

783. Leyendekkers, J.V. Structure of aqueous electrolyte solutions. Thermodynamic internal pressure. J. Chem. Soc. Faraday Trans. 1 79, 1109-1121 (1983)

784. Chalikian, T.V. Structural thermodynamics of hydration. J. Phys. Chem. B 105, 12566-12578 (2001)

785. Jolicoeur, C., The, N.D. & Cabana, A. Near infrared spectra of water in aqueous solutions of organic salts. A solvation study of Bu4NBr, Φ4AsCl, and NaBΦ4. Can. J. Chem. 49, 2008-2013 (1971)

786. Swain, C.G., Swain, M.S., Powell, A.L. & Alunni, S. Solvent effects on chemical reactivity. Evaluation of anion- and cation-solvation components. J. Am. Chem. Soc. 105, 502-513 (1983)

787. Stangret, J. & Gampe, T. Ionic hydration behavior derived from infrared spectra in HDO. J. Phys. Chem. A 106, 5393-5402 (2002)

788. Stangret, J. & Kamieńska-Piotrowicz, E. Effect of tetraphenylphosphonium and tetraphenylborate ions on the water structure in aqueous solutions; FTIR studies of HDO spectra. J. Chem. Soc. Farad. Trans 93, 3463-3466 (1997)

789. Coetzee, J.F. & Sharpe, W.R. Solute-solvent interactions. VI. Specific interactions of tetraphenylarsonium, tetraphenylphosphonium, and tetraphenylborate ions with water and other solvents. J. Phys. Chem. 75, 3141-3146 (1971)

790. Rashin, A.A. & Honig, B. Reevaluation of the Born model of ion hydration. J. Phys. Chem. 89, 5588-5593 (1985)

791. Roux, B., Yu, H.-A. & Karplus, M. Molecular basis for the Born model of ion solvation. J. Phys. Chem. 94, 4683-4688 (1990)

792. Hummer, G., Pratt, L.R. & Garcia, A.E. Free energy of ionic hydration. J. Phys. Chem. 100, 1206-1215 (1996)

793. Lynden-Bell, R.M. & Rasaiah, J.C. From hydrophobic to hydrophilic behaviour: A simulation study of solvation entropy and free energy of simple solutes. J. Chem. Phys. 107, 1981-1991 (1997)

794. Koneshan, S., Rasaiah, J.C., Lynden-Bell, R.M. & Lee, S.H. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25°C. J. Phys. Chem. B 102, 4193-4204 (1998)

795. Schurhammer, R. & Wipff, G. Are the hydrophobic AsΦ4+ and BΦ4- ions equally solvated? A theoretical investigation in aqueous and nonaqueous solutions using different charge distributions. J. Phys. Chem. A 104, 11159-11168 (2000)

796. Lynden-Bell, R.M., Rasaiah, J.C. & Noworyta, J.P. Using simulation to study solvation in water. Pure Appl. Chem. 73, 1721-1731 (2001)

797. Rajamani, S., Ghosh, T. & Garde, S. Size dependent ion hydration, its asymmetry, and convergence to macroscopic behavior. J. Chem. Phys. 120, 4457-4466 (2004)

798. Grossfield, A. Dependence of ion hydration on the sign of the ion's charge. J. Chem. Phys. 122, 024506/1-024506/10 (2005)

799. Öhrn, A. & Karlström, G. Many-body polarization, a cause of asymmetric solvation of ions and quadrupoles. J. Chem. Theory Comput. 3, 1993-2001 (2007)

800. Gruziel, M., Rudnicki, W.R. & Lesyng, B. Hydration free energy of a model Lennard-Jones solute particle: microscopic Monte Carlo simulation studies, and interpretation based on mesoscopic models. J. Chem. Phys. 128, 064503/1-064503/13 (2008)

801. Ashbaugh, H.S. & Asthagiri, D. Single ion hydration free energies: A consistent comparison between experiment and classical molecular simulation. J. Chem. Phys. 129, 204501/1-204501/6 (2008)

802. Mobley, D.L., Barber II, A.E., Fennell, C.J. & Dill, K.A. Charge asymmetries in hydration of polar solutes. J. Phys. Chem. B 112, 2405-2414 (2008)

803. Reif, M.M. & Hünenberger, P.H. Computation of methodology-independent single-ion solvation properties from molecular simulations. Asymmetric solvation effects. Manuscript in preparation (2011)

804. Thompson, W.H. & Hynes, J.T. Frequency shifts in the hydrogen-bonded OH stretch in halide-water clusters. The importance of charge transfer. J. Am. Chem. Soc. 112, 6278-6286 (2000)

805. Wu, D.-Y., Duan, S., Liu, X.-M., Xu, Y.-C., Jiang, Y.-X., Ren, B., Xu, X., Lin, S.H. & Tian, Z.-Q. Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)n- (n=2 and 3), H2O···X- (X=F, Cl, Br, and I), and H2O···M (M=Cu, Ag, and Au). J. Phys. Chem. A 112, 1313-1321 (2008)

806. Hawkes, S.J. All positive ions give acid solutions in water. J. Chem. Educ. 73, 516-517 (1996)

807. Bernasconi, L., Baerends, E.J. & Sprik, M. Long-range solvent effects on the orbital interaction mechanism of water acidity enhancement in metal ion solutions: A comparative study of the electronic structure of aqueous Mg and Zn dications. J. Phys. Chem. B 110, 11444-11453 (2006)

808. Swaddle, T.W., Rosenqvist, J., Yu, P., Bylaska, E., Phillips, B.L. & Casey, W.H. Kinetic evidence for five-coordination in AlOH(aq)2+ ion. Science 308, 1450-1453 (2005)

809. Robertson, W.H., Johnson, M.A., Myashakin, E.M. & Jordan, K.D. Isolating the charge-transfer component of the anionic H-bond via spin suppression of the intracluster proton transfer reaction in the NO-·H2O entrance channel complex. J. Phys. Chem. A 106, 10010-10014 (2002)

810. Simon, C. & Klein, M.L. Ab initio molecular dynamics simulation of a water-hydrogen fluoride equimolar mixture. Chem. Phys. Chem. 6, 148-153 (2005)

811. Laasonen, K., Larrucea, J. & Sillap, A. Ab initio molecular dynamics study of a mixture of HF(aq) and HCl(aq). J. Phys. Chem. B 110, 12699-12706 (2006)

812. Blandamer, M.J. & Fox, M.F. Theory and applications of charge-transfer-to-solvent spectra. Chem. Rev. 70, 59-93 (1970)

813. Voet, A. Ionic radii and heat of hydration. Trans. Faraday Soc. 32, 1301-1303 (1936)

814. Latimer, W.M., Pitzer, K.S. & Slansky, C.M. The free energy of hydration of gaseous ions, and the absolute potential of the normal calomel electrode. J. Chem. Phys. 7, 108-111 (1939)

815. Canady, W.J. Comparison of effective ionic radii in solution. Can. J. Chem. 35, 1073-1075 (1957)

816. Senozan, N.M. Effective ionic radii and the enthalpies of solvation in liquid ammonia. J. Inorg. Nucl. Chem. 35, 727-736 (1973)

817. Qureshi, P.M. & Kamoonpuri, S.I.M. Ion solvation. The ionic radii problem. J. Chem. Edu. 68, 109-109 (1991)

818. Hyun, J.-K. & Ichiye, T. Understanding the Born radius via computer simulations and theory. J. Phys. Chem. B 101, 3596-3604 (1997)

819. Schmid, R., Miah, A.M. & Sapunov, V.N. A new table for the thermodynamic quantities of ionic hydration: Values and some applications (enthalpy-entropy compensation and Born radii). Phys. Chem. Chem. Phys. 2, 97-102 (2000)

820. Powell, R.E. & Latimer, W.M. The entropy of aqueous solutes. J. Chem. Phys. 19, 1139-1141 (1951)

821. Latimer, W.M. Single ion free energies and entropies of aqueous ions. J. Chem. Phys. 23, 90-92 (1955)

822. Fawcett, W.R. & Blum, L. Application of the mean spherical approximation to the estimation of single ion thermodynamic quantities of solvation for monoatomic monovalent ions in aqueous solutions. J. Electroanal. Chem. 328, 333-340 (1992)

823. Choi, D.S., Jhon, M.S. & Eyring, H. Curvature dependence of the surface tension and the theory of solubility. J. Chem. Phys. 53, 2608-2614 (1956)

824. Sinanoǧlu, O. Microscopic surface tension down to molecular dimensions and microthermodynamic surface areas of molecules or clusters. J. Chem. Phys. 75, 463-468 (1981)

825. Moura-Ramos, J.J., Dionísio, M.S., Gonçalves, R.M.C. & Diogo, H.P. A further view on the calculation of the enthalpy of cavity formation in liquids. The influence of the cavity size and shape. Can. J. Chem. 66, 2894-2902 (1988)

826. Gonçalves, R.M.C., Simões, A.M.N. & Moura-Ramos, J.J. The cavity models and the curvature dependence of the surface tension. Spherical cavities in anisotropic solvents. J. Solut. Chem. 22, 507-517 (1993)

827. Schmelzer, J.W.P., Gutzow, I. & Schmelzer Jr., J. Curvature-dependent surface tension and nucleation theory. J. Colloid. Interface Sci. 178, 657-665 (1996)

828. Marchuk, O.S. & Sysoev, V.M. Influence of the drop size on the coefficient of surface tension in a wide range of pressures and temperatures along the coexistence curve. J. Mol. Liq. 105, 121-125 (2003)

829. Kashchiev, D. Determining the curvature dependence of surface tension. J. Chem. Phys. 118, 9081-9083 (2003)

830. Baidakov, V.G., Boltachev, G.S. & Chernykh, G.G. Curvature corrections to surface tension. Phys. Rev. E 70, 011603/1-011603/7 (2004)

831. Thompson, S.M., Gubbins, K.E., Walton, J.P.R.B., Chantry, R.A.R. & Rowlinson, J.S. A molecular dynamics study of liquid drops. J. Chem. Phys. 81, 530-542 (1984)

832. Nijmeijer, M.J.P., Bruin, C., van Woerkom, A.B., Bakker, A.F. & van Leeuwen, I.M.J. Molecular dynamics of the surface tension of a drop. J. Chem. Phys. 96, 565-576 (1992)

833. Brodskaya, E.N., Eriksson, J.C., Laaksonen, A. & Rusanov, A.I. Local structure and work of formation of water clusters studied by molecular dynamics simulations. J. Colloid. Interface Sci. 180, 86-97 (1996)

834. Zakharov, V.V., Brodskaya, E.N. & Laaksonen, A. Surface tension of water droplets: A molecular dynamics study of model and size dependencies. J. Chem. Phys. 107, 10675-10683 (1997)

835. Yasuoka, K. & Matsumoto, M. Molecular dynamics of homogeneous nucleation in the vapor phase. II. Water. J. Chem. Phys. 109, 8463-8470 (1998)

836. Moody, M.P. & Attard, P. Curvature dependent surface tension from a simulation of a cavity in a Lennard-Jones liquid close to coexistence. J. Chem. Phys. 115, 8967-8977 (2001)

837. Moody, M.P. & Attard, P. Curvature-dependent surface tension of a growing droplet. Phys. Rev. Lett. 91, 056104/1-056104/4 (2003)

838. Bryk, P., Roth, R., Mecke, K.R. & Dietrich, S. Hard-sphere fluids in contact with curved substrates. Phys. Rev. E 68, 031602/1-031602/8 (2003)

839. Stewart, M.C. & Evans, R. Wetting and drying at a curved substrate: Long-ranged forces. Phys. Rev. E 71, 011602/1-011602/14 (2005)

840. Blokhuis, E.M. & Kuipers, J. On the determination of the structure and tension of the interface between a fluid and a curved hard wall. J. Chem. Phys. 126, 054702/1-054702/10 (2007)

841. Bresme, F. Integral equation study of the surface tension of colloidal-fluid spherical interfaces. J. Phys. Chem. B 106, 7852-7859 (2002)

842. Falls, A.H., Scriven, L.E. & Davis, H.T. Structure and stress in spherical microstructures. J. Chem. Phys. 75, 3986-4002 (1981)

843. Guermeur, R., Biquard, F. & Jacolin, C. Density profiles and surface tension of spherical interfaces. Numerical results for nitrogen drops and bubbles. J. Chem. Phys. 82, 2040-2051 (1985)

844. Pitera, J.W. & van Gunsteren, W.F. The importance of solute-solvent van der Waals interactions with interior atoms of biopolymers. J. Am. Chem. Soc. 123, 3163-3164 (2001)

845. Byakov, V.M. & Stepanov, S.V. Microscopic surface tension of liquids with curved free boundary studied by positron annihilation. Radiation Phys. Chem. 58, 687-692 (2000)

846. Sharp, K.A., Nicholls, A., Fine, R.F. & Honig, B. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252, 106-109 (1991)

847. Matsumoto, M., Takaoka, Y. & Kataoka, Y. Liquid-vapor interface of water-methanol mixture. I. Computer simulation. J. Chem. Phys. 98, 1464-1472 (1993)

848. Alejandre, J., Tildesley, D.J. & Chapela, G.A. Molecular dynamics simulations of the orthobaric densities and surface tension of water. J. Chem. Phys. 102, 4574-4583 (1995)

849. Taylor, R.S., Dang, L.X. & Garrett, B.C. Molecular dynamics simulations of the liquid/vapor interface of SPC/E water. J. Phys. Chem. 100, 11720-11725 (1996)

850. Feller, S.E., Pastor, R.W., Rojnuckarin, A., Bogusz, S. & Brooks Jr., B.R. Effect of electrostatic force truncation on interfacial and transport properties of water. J. Phys. Chem. 100, 17011-17020 (1996)

851. Huang, D.M., Geissler, P.L. & Chandler, D. Scaling of hydrophobic solvation free energies. J. Phys. Chem. B 105, 6704-6709 (2001)

852. Rivera, J.L., Predota, M., Chialvo, A.A. & Cummings, P.T. Vapor-liquid equilibrium simulations of the SCPDP model of water. Chem. Phys. Lett. 357, 189-194 (2002)

853. Wynveen, A. & Bresme, F. Interactions of polarizable media in water: A molecular dynamics approach. J. Chem. Phys. 124, 104502/1-104502/8 (2006)

854. Rivera, J.L., Starr, F.W., Paricaud, P. & Cummings, P.T. Polarizable contributions to the surface tension of liquid water. J. Chem. Phys. 125, 094712/1-094712/8 (2006)

855. Chacón, E., Tarazona, P. & Alejandre, J. The intrinsic structure of the water surface. J. Chem. Phys. 125, 014709/1-014709/10 (2006)

856. Ismail, A.E., Grest, G.S. & Stevens, M.J. Capillary waves at the liquid-vapor interface and the surface tension of water. J. Chem. Phys. 125, 014702/1-014702/10 (2006)

857. Garrett, B.C., Schenter G.K., Morita, Molecular simulations of the transport of molecules across the liquid/vapor interface of water. Chem. Rev. 106, 1355-1374 (2006)

858. Lü, Y.L. & Wei, B. Second inflection point of water surface tension. Appl. Phys. Lett. 89, 164106/1-164106/3 (2006)

859. Vega, C. & de Miguel, E. Surface tension of the most popular models of water by using the test-area simulation method. J. Chem. Phys. 126, 154707/1-154707/10 (2007)

860. Mountain, R.D. An internally consistent method for the molecular dynamics simulation of the surface tension: Application to some TIP4P-type models of water. J. Phys. Chem. B 113, 482-486 (2009)

861. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926-935 (1983)

862. Reiss, H., Frisch, H.L. & Lebowitz, J.L. Statistical mechanics of rigid spheres. J. Chem. Phys. 31, 369-380 (1959)

863. Reiss, H., Frisch, H.L., Helfand, E. & Lebowitz, J.L. Aspects of the statistical thermodynamics of real fluids. J. Chem. Phys. 32, 119-124 (1960)

864. Helfand, E., Reiss, H., Frisch, H.L. & Lebowitz, J.L. Scaled particle theory of fluids. J. Chem. Phys. 33, 1379-1385 (1960)

865. Pierotti, R.A. Solubility of gases in liquids. J. Phys. Chem. 67, 1840-1845 (1963)

866. Pierotti, R.A. Aqueous solutions of nonpolar gases. J. Phys. Chem. 69, 281-288 (1965)

867. Stillinger, F.H. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solut. Chem. 2, 141-158 (1973)

868. Pierotti, R.A. A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev. 76, 717-726 (1976)

869. Huang, D.M. & Chandler, D. Cavity formation and the drying transition in the Lennard-Jones fluid. Phys. Rev. E 61, 1501-1506 (2000)

870. Ashbaugh, H.S. & Paulaitis, M.E. Effect of solute size and solute-water attractive interactions on hydration water structure around hydrophobic solutes. J. Am. Chem. Soc. 123, 10721-10728 (2001)

871. Ashbaugh, H.S. & Pratt, L.R. Scaled particle theory and the length scales of hydrophobicity. Rev. Mod. Phys. 78, 159-178 (2006)

872. Laidler, K.J. The entropies of ions in aqueous solution. I. Dependence on charge and radius. Can. J. Chem. 34, 1107-1113 (1956)

873. Askew, F.A., Bullock, E., Smith, H.T., Tinkler, R.K., Gatty, O. & Wolfenden, J.H. The thermochemistry of solutions. Part II. Heats of solution of electrolytes in non-aqueous solvents. J. Chem. Soc. (2), 1368-1376 (1934)

874. Bjerrum, N. & Larsson, E. Studien über Ionenverteilungskoeffizienten. I. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 127, 358-384 (1927)

875. Yu, H.-A., Roux, B. & Karplus, M. Solvation thermodynamics: An approach from analytic temperature derivatives. J. Chem. Phys. 92, 5020-5033 (1990)

876. Thomas, A.S. & Elcock, A.H. Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperatures. J. Am. Chem. Soc. 126, 2208-2214 (2004)

877. Horinek, D., Mamatkulov, S.I. & Netz, R.R. Rational design of ion force fields based on thermodynamic solvation properties. J. Chem. Phys. 130, 124507/1-124507/21 (2009)

878. Carlsson, J. & Åqvist, J. Absolute hydration entropies of alkali metal ions from molecular dynamics simulations. J. Phys. Chem. B 113, 10255-10260 (2009)

879. Marcus, Y. Thermodynamics of solvation of ions. 6. The standard partial molar volumes of aqueous ions at 298.15 K. J. Chem. Soc. Faraday Trans. 89, 713-718 (1993)

880. Pauli, W. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Physik 31, 765-783 (1925)

881. Mie, G. Zur kinetischen Theorie der einatomigen Körper. Ann. Phys. 316, 657-697 (1903)

882. Jones, J.E. On the determination of molecular fields. - II. From the equation of state of a gas. Proc. R. Soc. London Ser. A 106, 463-477 (1924)

883. Jones, J.E. On the determination of molecular fields. - I. From the variation of the viscosity of a gas with temperature. Proc. R. Soc. London Ser. A 106, 441-462 (1924)

884. Bopp, P., Jancso, G. & Heinzinger, K. An improved potential for non-rigid water-molecules in the liquid-phase. Chem. Phys. Lett. 98, 129-133 (1983)

885. Toukan, K. & Rahman, A. Molecular-dynamics study of atomic motions in water. Phys. Rev. B 31, 2643-2648 (1985)

886. Dang, L.X. & Pettitt, B.M. Simple intramolecular model potentials for water. J. Phys. Chem. 91, 3349-3354 (1987)

887. Wallqvist, A. & Teleman, O. Properties of flexible water models. Mol. Phys. 74, 515-533 (1991)

888. Zhu, S.B., Yao, S., Zhu, J.B., Singh, S. & Robinson, G.W. A flexible polarizable simple point-charge water model. J. Phys. Chem. 95, 6211-6217 (1991)

889. Zhu, S.B., Singh, S. & Robinson, G.W. A new flexible polarizable water model. J. Chem. Phys. 95, 2791-2799 (1991)

890. Ferguson, D.M. Parameterization and evaluation of a flexible water model. J. Comp. Chem. 16, 501-511 (1995)

891. Tironi, I.G., Brunne, R.M. & van Gunsteren, W.F. On the relative merits of flexible versus rigid models for use in computer simulations of molecular liquids. Chem. Phys. Lett. 250, 19-24 (1996)

892. Lewitt, M., Hirshberg, M., Sharon, R., Laidig, K.E. & Daggett, V. Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution. J. Phys. Chem. B 101, 5051-5061 (1997)

893. Schmitt, U.W. & Voth, G.A. The computer simulation of proton transport in water. J. Chem. Phys. 111, 9361-9381 (1999)

894. Hess, B., Saint-Martin, H. & Berendsen, H.J.C. Flexible constraints: An adiabatic treatment of quantum degrees of freedom, with application to the flexible and polarizable mobile charge densities in harmonic oscillators model for water. J. Chem. Phys. 116, 9602-9610 (2002)

895. Burnham, C.J. & Xantheas, S.S. Development of transferable interaction models for water. IV. A flexible, all-atom polarizable potential (TTM2-F) based on geometry dependent charges derived from an ab initio monomer dipole moment surface. J. Chem. Phys. 116, 5115-5124 (2002)

896. Lawrence, C.P. & Skinner, J.L. Flexible TIP4P model for molecular dynamics simulation of liquid water. Chem. Phys. Lett. 372, 842-847 (2003)

897. Jeon, J., Lefohn, A.E. & Voth, G.A. An improved polarflex water model. J. Chem. Phys. 118, 7504-7518 (2003)

898. Amira, S., Spangberg, D. & Hermansson, K. Derivation and evaluation of a flexible SPC model for liquid water. Chem. Phys. 303, 327-334 (2004)

899. Wu, Y.J., Tepper, H.L. & Voth, G.A. Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys. 124, 024503/1-024503/12 (2006)

900. Zhang, X.B., Liu, Q.L. & Zhu, A.M. An improved fully flexible fixed-point charges model for water from ambient to supercritical condition. Fluid Phase Equil. 262, 210-216 (2007)

901. Axilrod, B.M. & Teller, E. Interaction of the van der Waals type between three atoms. J. Chem. Phys. 11, 299-300 (1943)

902. Fitts, D.D. Statistical mechanics - a study of intermolecular forces. Ann. Rev. Phys. Chem. 17, 59-82 (1966)

903. Barker, J.A., Henderson, D. & Smith, W.R. Pair and triplet interactions in argon. Mol. Phys. 17, 579-592 (1969)

904. Barker, J.A., Fisher, R.A. & Watts, R.O. Liquid argon - Monte Carlo and molecular dynamics calculations. Mol. Phys. 21, 657-673 (1971)

905. Lybrand, T.P. & Kollman, P.A. Water-water and water-ion potential functions including terms for many body effects. J. Chem. Phys. 83, 2923-2933 (1985)

906. Attard, P. Simulation results for a fluid with the Axilrod-Teller triple dipole potential. Phys. Rev. A 45, 5649-5653 (1992)

907. Elrod, M.J. & Saykally, R.J. Many-body effects in intermolecular forces. Chem. Rev. 94, 1975-1997 (1994)

908. Su, Y., Caldwell, J.W. & Kollman, P.A. Molecular dynamics and free energy perturbation study of spherand complexation with metal ions employing additive and nonadditive force fields. J. Phys. Chem. 99, 10081-10085 (1995)

909. Sremaniak, L.S., Perera, L. & Berkowitz, M.L. Thermally induced structural changes in F-(H2O)11 and Cl-(H2O)11 clusters: Molecular dynamics computer simulations. J. Phys. Chem. 100, 1350-1356 (1996)

910. Cieplak, P. & Kollman, P. Monte Carlo simulation of aqueous solutions of Li+ and Na+ using many-body potentials. Coordination numbers, ion solvation enthalpies, and the relative free energy of solvation. J. Chem. Phys. 92, 6761-6767 (1990)

911. Spångberg, D. & Hermansson, K. Effective three-body potentials for Li+(aq) and Mg2+(aq). J. Chem. Phys. 119, 7263-7281 (2003)

912. Loeffler, H.H. Many-body effects on structure and dynamics of aqueous ionic solutions. J. Comp. Chem. 24, 1232-1239 (2003)

913. Moghaddam, M.S., Shimizu, S. & Chan, H.S. Temperature dependence of three-body hydrophobic interactions: Potential of mean force, enthalpy, entropy, heat capacity, and nonadditivity. J. Am. Chem. Soc. 127, 303-316 (2005)

914. Born, M. Dynamic theory of crystal lattices. Oxford University Press, Oxford, UK (1954)

915. Warshel, A. & Levitt, M. Theoretical studies of enzymic reactions - dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J. Mol. Biol. 103, 227-249 (1976)

916. van Belle, D., Couplet, I., Prevost, M. & Wodak, S.J. Calculations of electrostatic properties in proteins - Analysis of contributions from induced protein dipoles. J. Mol. Biol. 198, 721-735 (1987)

917. Straatsma, T.P. & McCammon, J.A. Molecular dynamics simulations with interaction potentials including polarization development of a noniterative method and application to water. Mol. Simul. 5, 181-192 (1990)

918. Karim, O.A. Simulation of an anion in water: effect of ion polarizability. Chem. Phys. Lett. 184, 560-565 (1991)

919. Rappe, A.K. & Goddard, W.A. Charge equilibration for molecular-dynamics simulations. J. Phys. Chem. 95, 3358-3363 (1991)

920. Dang, L.X., Rice, J.E., Caldwell, J. & Kollman, P.A. Ion solvation in polarizable water: Molecular dynamics simulations. J. Am. Chem. Soc. 113, 2481-2486 (1991)

921. Dang, L.X. Development of nonadditive intermolecular potentials using molecular dynamics: Solvation of Li+ and F- ions in polarizable water. J. Chem. Phys. 96, 6970-6977 (1992)

922. Zhu, S.-B. & Robinson, G.W. Molecular-dynamics computer simulation of an aqueous NaCl solution: Structure. J. Chem. Phys. 97, 4336-4348 (1992)

923. Dang, L.X. The nonadditive intermolecular potential for water revised. J. Chem. Phys. 97, 2659-2660 (1992)

924. Dang, L.X. & Garrett, B.C. Photoelectron spectra of the hydrated iodine anion from molecular-dynamics simulations. J. Chem. Phys. 99, 2972-2977 (1993)

925. Jorgensen, W.L. & Severance, D.L. Limited effects of polarization for Cl-(H2O)n and Na+(H2O)n clusters. J. Chem. Phys. 99, 4233-4235 (1993)

926. Rick, S.W., Stuart, S.J. & Berne, B.J. Dynamical fluctuating charge force field: Application to liquid water. J. Chem. Phys. 101, 6141-6156 (1994)

927. Perera, L. & Berkowitz, M.L. Structures of Cl-(H2O)n and F-(H2O)n (n=2,3,...,15) clusters. Molecular dynamics computer simulations. J. Chem. Phys. 100, 3085-3093 (1994)

928. Smith, D.E. & Dang, L.X. Computer simulation of NaCl association in polarizable water. J. Chem. Phys. 100, 3757-3766 (1994)

929. Sremaniak, L.S., Perera, L. & Berkowitz, M.L. Enthalpies of formation and stabilization energies of Br-(H2O)n (n=1,2,...,15) clusters. Comparisons between molecular dynamics computer simulations and experiment. Chem. Phys. Lett. 218, 377-382 (1994)

930. Roberts, J.E., Woodman, B.L. & Schnitker, J. The reaction field method in molecular dynamics simulations of point polarizable water models. Mol. Phys. 88, 1089-1108 (1996)

931. Xantheas, S.S. & Dang, L.X. Critical study of fluoride-water interactions. J. Phys. Chem. 100, 3989-3995 (1996)

932. Stuart, S.J. & Berne, B.J. Effects of polarizability on the hydration of the chloride ion. J. Phys. Chem. 100, 11934-11943 (1996)

933. Chang, T.M. & Dang, L.X. Ion solvation in polarizable chloroform: A molecular dynamics study. J. Phys. Chem. B 101, 10518-10526 (1997)

934. Carignano, M.A., Karlström, G & Linse, P. Polarizable ions in polarizable water: A molecular dynamics study. J. Phys. Chem. B 101, 1142-1147 (1997)

935. Banks, J.L., Kaminski, G.A., Zhou, R.H., Mainz, D.T., Berne, B.J. & Friesner, R.A. Parameterizing a polarizable force field from ab initio data. I. The fluctuating point charge model. J. Chem. Phys. 110, 741-754 (1999)

936. Bret, C., Field, M.J. & Hemmingsen, L. A chemical potential equalization model for treating polarization in molecular mechanical force fields. Mol. Phys. 98, 751-763 (2000)

937. Baaden, M., Berny, F., Madic, C. & Wipff, G. M3+ lanthanide cation solvation by acetonitrile: The role of cation size, counterions, and polarization effects investigated by molecular dynamics and quantum mechanical simulations. J. Phys. Chem. A 104, 7659-7671 (2000)

938. Martínez, J.M., Hernández-Cobos, J., Saint-Martin, H., Pappalardo, R.P., Ortega-Blake, I. & Marcos, E.S. Coupling a polarizable water model to the hydrated ion-water interaction potential: A test on the Cr3+ hydration. J. Chem. Phys. 112, 2339-2347 (2000)

939. Peslherbe, G.H., Ladanyi, B.M. & Hynes, J.T. Structure of NaI ion pairs in water clusters. Chem. Phys. 258, 201-224 (2000)

940. Halgren, T.A. & Damm, W. Polarizable force fields. Curr. Opin. Struct. Biol. 11, 236-242 (2001)

941. Koneshan, S., Rasaiah, J.C. & Dang, L.X. Computer simulation studies of aqueous solutions at ambient and supercritical conditions using effective pair potential and polarizable potential models for water. J. Chem. Phys. 114, 7544-7555 (2001)

942. Koch, D.M. & Peslherbe, G.H. On the transition from surface to interior solvation in iodide-water clusters. Chem. Phys. Lett. 359, 381-389 (2002)

943. Rick, S.W. & Stuart, S.J. Potentials and algorithms for incorporating polarizability in computer simulations. Rev. Comp. Chem. 18, 89-146 (2002)

944. Fischer R., Richardi J. & Fries P.H., Krienke H. The solvation of ions in acetonitrile and acetone. II. Monte Carlo simulations using polarizable solvent models. J. Chem. Phys. 117, 8467-8478 (2002)

945. Kubo, M., Levy, R.M., Rossky, P.J., Matubayasi, N. & Nakahara, M. Chloride ion hydration and diffusion in supercritical water using a polarizable water model. J. Phys. Chem. B 106, 3979-3986 (2002)

946. Grossfield, A., Ren, P. & Ponder, J.W. Ion solvation thermodynamics from simulation with a polarizable force field. J. Am. Chem. Soc. 125, 15671-15682 (2003)

947. Lamoureux, G., MacKerrel, A.D. & Roux, B. A simple polarizable model of water based on classical Drude oscillators. J. Chem. Phys. 119, 5185-5197 (2003)

948. Lamoureux, G. & Roux, B. Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119, 3025-3039 (2003)

949. Yu, H., Hansson, T. & van Gunsteren, W.F. Development of a simple, self-consistent polarizable model for liquid water. J. Chem. Phys. 118, 221-234 (2003)

950. Ayala, R., Martinez, J.M. & Pappalardo, R.R. On the halide hydration study: Development of first-principles halide ion-water interaction potential based on a polarizable model. J. Chem. Phys. 119, 9538-9548 (2003)

951. Carrillo-Tripp, M., Saint-Martin, H. & Ortega-Blake, I. A comparative study of the hydration of Na+ and K+ with refined polarizable model potentials. J. Chem. Phys. 118, 7062-7073 (2003)

952. Lee, S.H. Molecular dynamics simulation of limiting conductance for Li+ ion in supercritical water using polarizable models. Mol. Simul. 29, 211-221 (2003)

953. Yoo, S., Lei, Y.A. & Zeng, X.C. Effect of polarizability of halide anions on the ionic solvation in water clusters. J. Chem. Phys. 119, 6083-6091 (2003)

954. Lee, S.H. Molecular dynamics simulation studies of the limiting conductances of CaCl2 using extended simple point charge and revised polarizable models. Mol. Simul. 30, 669-678 (2004)

955. Yu, H. & van Gunsteren, W.F. Charge-on-spring polarizable water models revisited: From water clusters to liquid water to ice. J. Chem. Phys. 121, 9549-9564 (2004)

956. Patel, S. & Brooks, C.L. CHARMM fluctuating charge force field for proteins: I. Parameterization and application to bulk organic liquid simulations. J. Comp. Chem. 25, 1-15 (2004)

957. Spångberg, D. & Hermansson, K. Many-body potentials for aqueous Li+, Na+, Mg2+, and Al3+: Comparison of effective three-body potentials and polarizable models. J. Chem. Phys. 120, 4829-4843 (2004)

958. Ahn-Ercan, G., Krienke, H. & Kunz, W. Role of polarizability in molecular interactions in ion solvation. Curr. Opin. Coll. Int. Sci. 9, 92-96 (2004)

959. Yu, H. & van Gunsteren, W.F. Accounting for polarization in molecular simulation. Comput. Phys. Commun. 172, 69-85 (2005)

960. Archontis, G., Leontidis, E. & Andreou, G. Attraction of iodide ions by the free water surface, revealed by simulations with a polarizable force field based on Drude oscillators. J. Phys. Chem. B 109, 17957-17966 (2005)

961. Yang, Z.Z. & Li, X. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field. J. Phys. Chem. A 109, 3517-3520 (2005)

962. Li, X. & Yang, Z.Z. Study of lithium cation in water clusters: Based on atom-bond electronegativity equalization method fused into molecular mechanics. J. Phys. Chem. A 109, 4102-4111 (2005)

963. Li, X. & Yang, Z.Z. Hydration of Li+-ion in atom-bond electronegativity equalization method-7P water: A molecular dynamics simulation study. J. Chem. Phys. 122, 084514/1-084514/15 (2005)

964. Hagberg, D., Brdarski, S. & Karlström, G. On the solvation of ions in small water droplets. J. Phys. Chem. B 109, 4111-4117 (2005)

965. Hagberg, D., Karlström. G., Roos, B.O., Gagliardi, The coordination of uranyl in water: A combined quantum chemical and molecular simulation study. J. Am. Chem. Soc. 127, 14250-14256 (2005)

966. Herce, D.H., Perera, L., Darden, T. & Sagui, C. Surface solvation for an ion in a water cluster. J. Chem. Phys. 122, 024513/1-024513/10 (2005)

967. Shevkunov, S.V., Lukyanov, S.I., Leyssale, J.-M. & Millot, C. Computer simulation of Cl- hydration in anion-water clusters. Chem. Phys. 310, 97-107 (2005)

968. Ma, Y. & Garofalini, S.H. Iterative fluctuation charge model: A new variable charge molecular dynamics method. J. Chem. Phys. 124, 234102/1-234102/7 (2006)

969. Jiao, D., King, C., Grossfield, A., Darden, T.A. & Ren, P. Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J. Phys. Chem. B 110, 18553-18559 (2006)

970. Lamoureux, G. & Roux, B. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J. Phys. Chem. B 110, 3308-3322 (2006)

971. Piquemal, J.P., Perera, L., Cisneros, G.A., Ren, P.Y., Pedersen, L.G. & Darden, T.A. Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure. J. Chem. Phys. 125, 054511/1-054511/7 (2006)

972. San-Román, M., Carrillo-Tripp, M., Saint-Martin, H., Hernández-Cobos, J. & Ortega-Blake, I. A theoretical study of the hydration of Li+ by Monte Carlo simulations with refined ab initio based model potentials. Theor. Chem. Acc. 115, 177-189 (2006)

973. Wick, C.D., Dang, L.X. & Jungwirth, P. Simulated surface potentials at the vapor-water interface for the KCl aqueous electrolyte solution. J. Chem. Phys. 125, 024706/1-024706/4 (2006)

974. Wick, C.D. & Dang, L.X. Molecular mechanism of transporting a polarizable iodide anion across the water-CCl4 liquid/liquid interface. J. Chem. Phys. 126, 134702/1-134702/4 (2007)

975. Chen, J.H. & Martinez, T.J. QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics. Chem. Phys. Lett. 438, 315-320 (2007)

976. Geerke, D.P. & van Gunsteren, W.F. On the calculation of atomic forces in classical simulation using the charge-on-spring method to explicitly treat electronic polarization. J. Chem. Theory Comput. 3, 2128-2137 (2007)

977. Geerke, D.P. & van Gunsteren, W.F. Calculation of the free energy of polarization: Quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters. J. Phys. Chem. B 111, 6425-6436 (2007)

978. Alcaraz, O., Bitrián, V. & Trullàs, J. Molecular dynamics study of polarizable point dipole models for molten sodium iodide. J. Chem. Phys. 127, 154508/1-154508/10 (2007)

979. Laage, D. & Hynes, J.T. On the residence time for water in a solute hydration shell: Application to aqueous halide solutions. J. Phys. Chem. B 112, 7697-7701 (2008)

980. Kunz, A.-P. E. & van Gunsteren, W.F. Development of a non-linear classical polarization model for liquid water and aqueous solutions: COS/D. J. Phys. Chem. A 113, 11570-11579 (2009)

981. Hagler, A.T. & Ewig, C.S. On the use of quantum energy surfaces in the derivation of molecular force-fields. Comp. Phys. Comm. 84, 131-155 (1994)

982. Hwang, M.-J., Stockfisch, T.P. & Hagler, A.T. Derivation of class-II force-fields. 2. Derivation and characterization of a class-II force-field, CFF93, for the alkyl functional-group and alkane molecules. J. Am. Chem. Soc. 116, 2515-2525 (1994)

983. Maple, J.R., Hwang, M.-J., Stockfisch, T.P., Dinur, U., Waldman, M., Ewig, C.S. & Hagler, A.T. Derivation of class-II force-fields. 1. Methodology and quantum force-field for the alkyl functional-group and alkane molecules. J. Comp. Chem. 15, 162-182 (1994)

984. Maple, J.R., Hwang, M.-J., Stockfisch, T.P. & Hagler, A.T. Derivation of class-II force-fields. 3. Characterization of a quantum force-field for alkanes. Isr. J. Chem. 34, 195-231 (1994)

985. Morse, P.M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57-64 (1929)

986. Kihara, T. Virial coefficients and models of molecules in gases. Rev. Mod. Phys. 25, 831-843 (1953)

987. Huggins, M.L. & Mayer, J.E. Interatomic distances in crystals of the alkali halides. J. Chem. Phys. 1, 643-646 (1933)

988. Huggins, M.L. Erratum to “Lattice energies, equilibrium distances, compressibilities and characteristic frequencies of alkali halide crystals” [J. Chem. Phys. 5, 143-148 (1937)]. J. Chem. Phys. 15, 212-212 (1947)

989. Slater, J.C. The normal state of helium. Phys. Rev. 32, 349-360 (1928)

990. Buckingham, R.A. The classical equation of state of gaseous helium, neon and argon. Proc. Roy. Soc. Lond. A 168, 264-283 (1938)

991. Buckingham, R.A. & Corner, J. Tables of second virial and low-pressure Joule-Thomson coefficients for intermolecular potentials with exponential repulsion. Proc. Roy. Soc. Lond. A 189, 118-129 (1947)

992. Halgren, T.A. Representation of van der Waals (vdW) interactions in molecular mechanics force-fields: Potential form, combination rules, and vdW parameters. J. Am. Chem. Soc. 114, 7827-7843 (1992)

993. Lennard-Jones, J.E. The equation of state of gases and critical phenomena. Physica 4, 941-956 (1937)

994. Schneider, T. & Stoll, E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302-1322 (1978)

995. van Gunsteren, W.F., Berendsen, H.J.C. & Rullmann, J.A.C. Stochastic dynamics for molecules with constraints. Brownian dynamics of n-alkanes. Mol. Phys. 44, 69-95 (1981)

996. Yun-yu, S., Lu, W. & van Gunsteren, W.F. On the approximation of solvent effects on the conformation and dynamics of cyclosporin A by stochastic dynamics simulation techniques. Mol. Simul. 1, 369-383 (1988)

997. Herschbach, D.R., Johnston, H.S. & Rapp, D. Molecular partition functions in terms of local properties. J. Chem. Phys. 31, 1652-1661 (1959)

998. Gō, N. & Scheraga, H.A. Analysis of the contribution of internal vibrations to the statistical weights of equilibrium conformations of macromolecules. J. Chem. Phys. 51, 4751-4767 (1969)

999. Fixman, M. Classical statistical mechanics of constraints: A theorem and application to polymers. Proc. Natl. Acad. Sci. USA 71, 3050-3053 (1974)

1000. Gō, N. & Scheraga, H.A. On the use of classical statistical mechanics in the treatment of polymer chain conformation. Macromolecules 9, 535-542 (1976)

1001. Gottlieb, M. & Bird, R.B. A molecular dynamics calculation to confirm the incorrectness of the random walk distribution for describing the Kramers freely jointed bead-rod chain. J. Chem. Phys. 65, 2467-2468 (1976)

1002. Helfand, E. Flexible vs. rigid constraints in statistical mechanics. J. Chem. Phys. 71, 5000-5007 (1979)

1003. Edholm, O. & Berendsen, H.J.C. Entropy estimation from simulations of non-diffusive systems. Mol. Phys. 51, 1011-1028 (1984)

1004. Carter, E.A., Ciccotti, G., Hynes, J.T. & Kapral, R. Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156, 472-477 (1989)

1005. Boresch, S. & Karplus, M. The Jacobian factor in free energy simulations. J. Chem. Phys. 105, 5145-5154 (1996)

1006. den Otter, W.K. & Briels, W.J. The calculation of free-energy differences by constrained molecular-dynamics simulations. J. Chem. Phys. 109, 4139-4146 (1998)

1007. den Otter, W.K. & Briels, W.J. Free energy from molecular dynamics with multiple constraints. Mol. Phys. 98, 773-781 (2000)

1008. Straatsma, T.P., Zacharias, M. & McCammon, J.A. Holonomic constraint contributions to free energy differences from thermodynamic integration molecular dynamics simulations. Chem. Phys. Lett. 196, 297-302 (1992)

1009. Wang, L. & Hermans, J. Change of bond lengths in free-energy simulations: Algorithmic improvements, but when is it necessary. J. Chem. Phys. 100, 9129-9139 (1994)

1010. Sprik, M. & Ciccotti, G. Free energy from constrained molecular dynamics. J. Chem. Phys. 109, 7737-7744 (1998)

1011. Darve, E. & Pohorille, A. Calculating free energies using average force. J. Chem. Phys. 115, 9169-9183 (2001)

1012. Teleman, O. An efficient way to conserve the total energy in molecular dynamics simulations; boundary effects on energy conservation and dynamic properties. Mol. Simul. 1, 345-355 (1988)

1013. Hünenberger, P.H. & van Gunsteren, W.F. Alternative schemes for the inclusion of a reaction-field correction into molecular dynamics simulations: Influence on the simulated energetic, structural, and dielectric properties of liquid water. J. Chem. Phys. 108, 6117-6134 (1998)

1014. Berendsen, H.J.C. Treatment of long-range forces in molecular dynamics. In: Molecular dynamics and protein structure (Proceedings Workshop 13-18 May 1984, at University of North Carolina). Hermans, J., Ed. Polycrystal Book Service, P.O. Box 27, Western Springs, Illinois 60558, USA, pp 18-22 (1985)

1015. Berendsen, H.J.C. & Hol, W.G.J. Long-range electrostatic forces. Europhysics News 17, 8-10 (1986)

1016. Harvey, S.C. Treatment of electrostatic effects in macromolecular modeling. Proteins: Struct. Funct. Genet. 5, 78-92 (1989)

1017. Davis, M.E. & McCammon, J.A. Electrostatics in biomolecular structure and dynamics. Chem. Rev. 90, 509-521 (1990)

1018. Warshel, A. & Åqvist, J. Electrostatic energy and macromolecular function. Annu. Rev. Biophys. Biophys. Chem. 20, 267-298 (1991)

1019. Berendsen, H.J.C. Electrostatic interactions. In: Computer simulation of biomolecular systems, theoretical and experimental applications. Volume 2. van Gunsteren, W.F., Weiner, P.K. & Wilkinson, A.J., Eds. ESCOM Science Publishers, B.V., Leiden, The Netherlands., pp 161-181 (1993)

1020. Smith, P.E. & van Gunsteren, W.F. Methods for the evaluation of long range electrostatic forces in computer simulations of molecular systems. In: Computer simulation of biomolecular systems, theoretical and experimental applications. Volume 2. van Gunsteren, W.F., Weiner, P.K. & Wilkinson, A.J., Eds. ESCOM Science Publishers, B.V., Leiden, The Netherlands., pp 182-212 (1993)

1021. Levy, R.M. & Gallicchio, E. Computer simulations with explicit solvent: Recent progress in the thermodynamic decomposition of free energies, and in modeling electrostatic effects. Annu. Rev. Phys. Chem. 49, 531-567 (1998)

1022. Warshel, A. & Papazyan, A. Electrostatic effects in macromolecules: Fundamental concepts and practical modeling. Curr. Opin. Struct. Biol. 8, 211-217 (1998)

1023. Cheatham III, T.E. & Brooks, B.R. Recent advances in molecular dynamics simulation towards the realistic representation of biomolecules in solution. Theor. Chem. Acc. 99, 279-288 (1998)

1024. Sagui, C. & Darden, T.A. Molecular dynamics simulations of biomolecules: Long-range electrostatic effects. Annu. Rev. Biophys. Biomol. Struct. 28, 155-179 (1999)

1025. Darden, T., Perera, L., Li, L. & Pedersen, L. New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 7, R55-R60 (1999)

1026. Hünenberger, P.H., Börjesson, U. & Lins, R.D. Electrostatic interactions in biomolecular systems. Chimia 55, 861-866 (2001)

1027. Gibbon, P. & Sutmann, G. Long-range interactions in many-particle simulation. In: Quantum simulations of complex many-body systems: From theory to algorithms, lecture notes, NIC series. Volume 10. Grotendorst, J., Marx, D. & Muramatsu, A., Eds. John von Neumann institute for Computing, Jülich, Germany, pp 467-506 (2002)

1028. Kastenholz, M. & Hünenberger, P.H. Influence of artificial periodicity and ionic strength in molecular dynamics simulations of charged biomolecules employing lattice-sum methods. J. Phys. Chem. B 108, 774-788 (2004)

1029. Koehl, P. Electrostatics calculations: latest methodological advances. Curr. Opin. Struct. Biol. 16, 142-151 (2006)

1030. Warshel, A., Sharma, P.K., Kato, M. & Parson, W.W. Modeling electrostatic effects in proteins. Biochim. Biophys. Acta 1764, 1647-1676 (2006)

1031. Reif, M.M., Kräutler, V., Kastenholz, M.A., Daura, X. & Hünenberger, P.H. Explicit-solvent molecular dynamics simulations of a reversibly-folding β-heptapeptide in methanol: Influence of the treatment of long-range electrostatic interactions. J. Phys. Chem. B 113, 3112-3128 (2009)

1032. Moore, G.E. Cramming more components onto integrated circuits. Electronics 38, 114-117 (1965)

1033. Gilson, M.K. Theory of electrostatic interactions in macromolecules. Curr. Opin. Struct. Biol. 5, 216-223 (1995)

1034. Brooks III, C.L. Methodological advances in molecular dynamics simulations of biological systems. Curr. Opin. Struct. Biol. 5, 211-215 (1995)

1035. Hansson, T., Oostenbrink, C. & van Gunsteren, W.F. Molecular dynamics simulations. Curr. Opin. Struct. Biol. 12, 190-196 (2002)

1036. Norberg, J. & Nilsson, L. Advances in biomolecular simulations: Methodology and recent applications. Quart. Rev. Biophys. 36, 257-306 (2003)

1037. Adcock, S.A. & McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev. 106, 1589-1615 (2006)

1038. Friedman, H.L. Image approximation to reaction field. Mol. Phys. 29, 1533-1543 (1975)

1039. Berkowitz, M. & McCammon, J.A. Molecular dynamics with stochastic boundary conditions. Chem. Phys. Lett. 90, 215-217 (1982)

1040. Brooks III, C.L. & Karplus, M. Deformable stochastic boundaries in molecular dynamics. J. Chem. Phys. 79, 6312-6325 (1983)

1041. Berkowitz, M., Morgan, J.D. & McCammon, J.A. Generalized Langevin dynamics simulations with arbitrary time-dependent memory kernels. J. Chem. Phys. 78, 3256-3261 (1983)

1042. Brünger, A., Brooks III, C.L. & Karplus, M. Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem. Phys. Lett. 105, 495-500 (1984)

1043. Belch, A.C. & Berkowitz, M. Molecular-dynamics simulations of TIPS2 water restricted by a spherical hydrophobic boundary. Chem. Phys. Lett. 113, 278-282 (1985)

1044. Warshel, A. & King, G. Polarization constraints in molecular dynamics simulations of aqueous solutions : The surface constraint all atom solvent (SCAAS) model. Chem. Phys. Lett. 121, 124-129 (1985)

1045. Rullmann, J.A.C. & van Duijinen, P.T. Analysis of discrete and continuum dielectric models - Application to the calculation of protonation energies in solution. Mol. Phys. 61, 293-311 (1987)

1046. King, G. & Warshel, A. A surface constrained all-atom solvent model for effective simulations. J. Chem. Phys. 91, 3647-3661 (1989)

1047. Åqvist, J. Ion-water interaction potentials derived from free energy perturbation simulations. J. Phys. Chem. 94, 8021-8024 (1990)

1048. Juffer, A.H. & Berendsen, H.J.C. Dynamic surface boundary conditions. A simple boundary model for molecular dynamics simulations. Mol. Phys. 79, 623-644 (1993)

1049. Wallqvist, A. On the implementation of Friedman boundary-conditions in liquid water simulations. Mol. Simul. 10, 13-17 (1993)

1050. Alper, H. & Levy, R.M. Dielectric and thermodynamic response of a generalized reaction field model for liquid state simulations. J. Chem. Phys. 99, 9847-9852 (1993)

1051. Beglov, D. & Roux, B. Finite representation of an infinite bulk system : Solvent boundary potential from computer simulations. J. Chem. Phys. 100, 9050-9063 (1994)

1052. Wang, L. & Hermans, J. Reaction field molecular dynamics simulations with Friedman's image charge method. J. Phys. Chem. 99, 12001-12007 (1995)

1053. Essex, J.W. & Jorgensen, W.L. An empirical boundary potential for water droplet simulations. J. Comput. Chem. 16, 951-972 (1995)

1054. Montoro, J.C.G. & Abascal, J.L.F. A modulated bulk as fuzzy boundary for the simulation of long-ranged inhomogeneous systems. Mol. Simul. 14, 313-329 (1995)

1055. Beglov, D. & Roux, B. Dominant solvation effects from the primary shell of hydration: Approximation for molecular dynamics simulations. Biopolymers 35, 171-178 (1995)

1056. Darden, T., Pearlman, D. & Pedersen, L.G. Ionic charging free energies : Spherical versus periodic boundary conditions. J. Chem. Phys. 109, 10921-10935 (1998)

1057. Sham, Y.Y. & Warshel, A. The surface constraint all atom model provides size independent results in calculations of hydration free energies. J. Chem. Phys. 109, 7940-7944 (1998)

1058. Lounnas, V., Lüdemann, S.K., Towards molecular dynamics simulation of large proteins with a hydration shell at constant pressure. Biophys. Chem. 78, 157-182 (1999)

1059. Kimura, S.R., Brower, R.C., Zhang, C. & Sugimori, M. Surface of active polarons: A semiexplicit solvation method for biomolecular dynamics. J. Chem. Phys. 112, 7723-7734 (2000)

1060. Sankararamakrishnan, R., Konvicka, K., Mehler, E.L. & Weinstein, H. Solvation in simulated annealing and high-temperature molecular dynamics of proteins: A restrained water droplet model. Int. J. Quant. Chem. 77, 174-186 (2000)

1061. Im, W., Bernèche, S. & Roux, B. Generalized solvent boundary potential for computer simulations. J. Chem. Phys. 114, 2924-2937 (2001)

1062. Banavali, N.K., Im, W. & Roux, B. Electrostatic free energy calculations using the generalized solvent boundary potential method. J. Chem. Phys. 117, 7381-7388 (2002)

1063. Li, Y., Krilov, G. & Berne, B.J. Elastic bag model for molecular dynamics simulations of solvated systems: Application to liquid argon. J. Phys. Chem. B 109, 463-470 (2005)

1064. Brancato, G., di Nola, A., Barone, V. & Amadei, A. A mean field approach for molecular simulations of fluid systems. J. Chem. Phys. 122, 154109/1-154109/9 (2005)

1065. Brancato, G., Rega, N. & Barone, V. Reliable molecular simulations of solute-solvent systems with a minimum number of solvent shells. J. Chem. Phys. 124, 21405/1-21405/9 (2006)

1066. Wang, J., Deng, Y. & Roux, B. Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys. J. 91, 2798-2814 (2006)

1067. Li, Y., Krilov, G. & Berne, B.J. Elastic bag model for molecular dynamics simulations of solvated systems: Application to liquid water and solvated peptides. J. Phys. Chem. B. 110, 13256-13263 (2006)

1068. Alder, B.J. & Wainwright, T.E. Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459-466 (1959)

1069. Brooks III, C.L., Brünger, A.T. & Karplus, M. Active site dynamics in protein molecules: A stochastic boundary molecular-dynamics approach. Biopolymers 24, 843-865 (1985)

1070. Brünger, A.T., Brooks III, C.L. & Karplus, M. Active site dynamics of ribonuclease. Proc. Natl. Acad. Sci. USA 82, 8458-8462 (1985)

1071. Kim, K.S. On effective methods to treat solvent effects in macromolecular mechanics and simulations. Chem. Phys. Lett. 156, 261-268 (1989)

1072. Ewald, P.P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 369, 253-287 (1921)

1073. de Leeuw, S.W., Perram, J.W. & Smith, E.R. Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc. R. Soc. Lond. A 373, 27-56 (1980)

1074. de Leeuw, S.W., Perram, J.W. & Smith, E.R. Simulation of electrostatic systems in periodic boundary conditions. II. Equivalence of boundary conditions. Proc. R. Soc. Lond. A. 373, 57-66 (1980)

1075. Luty, B.A., Davis, M.E., Tironi, I.G. & van Gunsteren, W.F. A comparison between particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems. Mol. Simul. 14, 11-20 (1994)

1076. Darden, T.A., Toukmaji, A. & Pedersen, L.G. Long-range electrostatic effects in biomolecular simulation. J. Chim. Phys. 94, 1346-1364 (1997)

1077. Deserno, M. & Holm, C. How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109, 7678-7693 (1998)

1078. Deserno, M. & Holm, C. How to mesh up Ewald sums. II. An accurate error estimate for the particle-particle-particle-mesh algorithm. J. Chem. Phys. 109, 7694-7701 (1998)

1079. Hünenberger, P.H. & McCammon, J.A. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: A continuum electrostatics study. Biophys. Chem. 78, 69-88 (1999)

1080. Boresch, S. & Steinhauser, O. The dielectric self-consistent field method. II. Application to the study of finite range effects. J. Chem. Phys. 115, 10793-10807 (2001)

1081. Kastenholz, M.A. & Hünenberger, P.H. Computation of methodology-independent ionic solvation free energies from molecular simulations: II. The hydration free energy of the sodium cation. J. Chem. Phys. 124, 224501/1-224501/20 (2006)

1082. Heinz, T.N. & Hünenberger, P.H. Combining the lattice-sum and reaction-field approaches for evaluating long-range electrostatic interactions in molecular simulations. J. Chem. Phys. 123, 034107/1-034107/19 (2005)

1083. Christen, M., Hünenberger, P.H., Bakowies, D., Baron, R., Bürgi, R., Geerke, D.P., Heinz, T.N., Kastenholz, M.A., Kräutler, V., Oostenbrink, C., Peter, C., Trzesniak, D. & van Gunsteren, W.F. The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem. 26, 1719-1751 (2005)

1084. Redlack, A. & Grindlay, J. The electrostatic potential in a finite ionic crystal. Can. J. Phys. 50, 2815-2825 (1972)

1085. Nijboer, B.R.A. & Ruijgrok, T.W. On the energy per particle in three- and two-dimensional Wigner lattices. J. Stat. Phys. 53, 361-382 (1988)

1086. Roberts, J.E. & Schnitker, J. Boundary conditions in simulations of aqueous ionic solutions: A systematic study. J. Phys. Chem. 99, 1322-1331 (1995)

1087. Boresch, S. & Steinhauser, O. Presumed versus real artifacts of the Ewald summation technique: The importance of the dielectric boundary condition. Ber. Bunsenges. Phys. Chem. 101, 1019-1029 (1997)

1088. Boresch, S. & Steinhauser, O. Rationalizing the effects of modified electrostatic interactions in computer simulations : The dielectric self-consistent field method. J. Chem. Phys. 111, 8271-8274 (1999)

1089. Caillol, J.-M. Comments on the numerical simulations of electrolytes in periodic boundary conditions. J. Chem. Phys. 101, 6080-6090 (1994)

1090. Euwema, R.N., Whilhite, D.L. & Surratt, G.T. General crystalline Hartree-Fock formalism - Diamond results. Phys. Rev. B 7, 818-831. (1973)

1091. Euwema, R.N. & Surratt, G.T. The absolute positions of calculated energy bands. J. Phys. Chem. Solids 36, 67-71 (1975)

1092. Redlack, A. & Grindlay, J. Coulombic potential lattice sums. J. Phys. Chem. Solids 36, 73-82 (1975)

1093. Stuart, S.N. Depolarization correction for Coulomb lattice sums. J. Comput. Phys. 29, 127-132 (1978)

1094. Deem, M.W., Newsam, J.M. & Sinha, S.K. The h=0 term in Coulomb sums by the Ewald transformation. J. Phys. Chem. 94, 8356-8359 (1990)

1095. Roberts, J.E. & Schnitker, J. How the unit cell surface charge distribution affects the energetics of ion-solvent interactions in simulations. J. Chem. Phys. 101, 5024-5031 (1994)

1096. Fraser, L.M., Foulkes, W.M.C., Rajagopal, G., Needs, R.J., Kenny, S.D. & Williamson, A.J. Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions. Phys. Rev. B 53, 1814-1832 (1996)

1097. Pillardy, J., Wawak, R.J., Arnautova, Y.A., Czaplewski, C. & Scheraga, H.A. Crystal structure prediction by global optimization as a tool for evaluating potentials: Role of the dipole moment correction term in successful predictions. J. Am. Chem. Soc. 122, 907-921 (2000)

1098. Herce, H.D. & Garcia, A.E. The electrostatic surface term: (I) Periodic systems. J. Chem. Phys. 126, 124106/1-124106/13 (2007)

1099. de Wette, F.W. Comments on the electrostatic energy of a Wigner solid. Phys. Rev. B 21, 3751-3753 (1980)

1100. Neumann, M. Dipole moment fluctuation formulas in computer simulations of polar systems. Mol. Phys. 50, 841-858 (1983)

1101. Evjen, H.M. On the stability of certain heteropolar crystals. Phys. Rev. 39, 675-687 (1932)

1102. Gurney, I.D.C. Lattice sums: The validity of Evjen's method. Phys. Rev. 90, 317-318 (1952)

1103. Krishnan, K.S. & Roy, S.K. Evjen's method of evaluating the Madelung constant. Phys. Rev. 87, 581-582 (1952)

1104. Dahl, J.P. Correction and extension of Evjen's method for evaluating crystal potentials by means of lattice sums. J. Phys. Chem. Solids 26, 33-40 (1965)

1105. Lekner, J. Summation of dipolar fields in simulated liquid-vapour interfaces. Physica A 157, 826-838 (1989)

1106. Lekner, J. Summation of Coulomb fields in computer-simulated disordered systems. Physica A 176, 485-498 (1991)

1107. Sperb, R. Extension and simple proof of Lekner's summation formula for Coulomb forces. Mol. Simul. 13, 189-193 (1994)

1108. Gronbech-Jensen, N. Lekner summation of long range interactions in periodic systems. Int. J. Mod. Phys. C 8, 1287-1297 (1997)

1109. Mazars, M. Lekner summations. J. Chem. Phys. 115, 2955-2965 (2001)

1110. English, N.J. & Macelroy, J.M.D. Atomistic simulations of liquid water using Lekner electrostatics. Mol. Phys. 100, 3753-3769 (2002)

1111. Mazars, M. Lekner summations and Ewald summations for quasi-two-dimensional systems. Mol. Phys. 103, 1241-1260 (2005)

1112. Hockney, R.W. & Eastwood, J.W. Computer simulation using particles. McGraw-Hill, New York, USA (1981)

1113. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089-10092 (1993)

1114. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. & Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577-8593 (1995)

1115. Greengard, L. & Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys. 73, 325-348 (1987)

1116. Schmidt, K.E. & Lee, M.A. Implementing the fast multipole method in three dimensions. J. Stat. Phys. 63, 1223-1235 (1991)

1117. Ding, H.-Q., Karasawa, N. & Goddard III, W.A. The reduced cell multipole method for Coulomb interactions in periodic systems with million-atom unit cells. Chem. Phys. Lett. 196, 6-10 (1992)

1118. Shimada, J., Kaneko, H. & Takada, T. Efficient calculations of Coulombic interactions in biomolecular simulations with periodic boundary conditions. J. Comput. Chem. 14, 867-878 (1993)

1119. Shimada, J., Kaneko, H. & Takada, T. Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations. J. Comput. Chem. 15, 28-43 (1994)

1120. Pollock, E.L. & Glosli, J. Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems. Comput. Phys. Commun. 95, 93-110 (1996)

1121. Lambert, C.G., Darden, T.A. & Board Jr., J.A. A multipole-based algorithm for efficient calculation of forces and potentials in macroscopic periodic assemblies of particles. J. Comput. Phys. 126, 274-285 (1996)

1122. Challacombe, M., White, C. & Head-Gordon, M. Periodic boundary conditions and fast multipole methods. J. Chem. Phys. 107, 10131-10140 (1997)

1123. Figueirido, F., Levy, R.M., Zhou, R. & Berne, B.J. Large scale simulation of macromolecules in solution: Combining the periodic fast multipole method with multiple time step integrators. J. Phys. Chem. 106, 9835-9849 (1997)

1124. Schmidt, K.E. & Lee, M.A. Multipole Ewald sums for the fast multipole method. J. Stat. Phys. 89, 411-424 (1997)

1125. Kudin, K.N. & Scuseria, G.E. A fast multipole method for periodic systems with arbitrary unit cell geometries. Chem. Phys. Lett. 283, 61-68 (1998)

1126. Duan, Z.-H. & Krasny, R. An Ewald summation based multipole method. J. Chem. Phys. 113, 3492-3495 (2000)

1127. Kudin, K.N. & Scuseria, G.E. Analytic stress tensor with the periodic fast multipole method. Phys. Rev. B 61, 5141-5146 (2000)

1128. Zheng, J., Balasundaram, R., Gehrke, S.H., Heffelfinger, G.S., Goddard III, W.A. & Jiang, S. Cell multipole method for molecular simulations in bulk and confined systems. J. Chem. Phys. 118, 5347-5355 (2003)

1129. Ogata, S., Campbell, T.J., Kalia, R.K., Nakano, A., Vashishta, P. & Vemparala, S. Scalable and portable implementation of the fast multipole method on parallel computers. Comput. Phys. Comm. 153, 445-461 (2003)

1130. Kudin, K.N. & Scuseria, G.E. Revisiting infinite lattice sums with the periodic fast multipole method. J. Chem. Phys. 121, 2886-2890 (2004)

1131. Merrick, M.P., Iyer, K.A. & Beck, T.L. Multigrid method for electrostatic computations in numerical density functional theory. J. Phys. Chem. 99, 12478-12482 (1995)

1132. Sagui, C. & Darden, T. Multigrid methods for classical molecular dynamics simulations of biomolecules. J. Chem. Phys. 114, 6578-6591 (2001)

1133. Izaguirre, J.A., Hampton, S.S. & Matthey, T. Parallel multigrid summation for the N-body problem. J. Parallel. Distrib. Comput. 65, 949-962 (2005)

1134. York, D.M. & Yang, W. The fast Fourier Poisson method for calculating Ewald sums. J. Chem. Phys. 101, 3298-3300 (1994)

1135. Genovese, L., Deutsch, T. & Godecker, T. Efficient and accurate three-dimensional Poisson solver for surface problems. J. Chem. Phys. 127, 054704/1-054704/6 (2007)

1136. Maggs, A.C. Dynamics of a local algorithm for simulating Coulomb interactions. J. Chem. Phys. 117, 1975-1981 (2002)

1137. Maggs, A.C. & Rosetto, V. Local simulation algorithms for Coulomb interactions. Phys. Rev. Lett. 88, 196402/1-196402/4 (2002)

1138. Rottler, J., A continuum, O(N) Monte Carlo algorithm for charged particles. J. Chem. Phys. 120, 3119-3129 (2004)

1139. Rottler, J. & Maggs, A.C. Local molecular dynamics with Coulombic interactions. Phys. Rev. Lett. 93, 170201/1-170201/4 (2004)

1140. Maggs, A.C., Auxiliary field simulation and Coulomb's law. Comp. Phys. Comm. 169, 160-165 (2005)

1141. Barojas, J., Levesque, D. & Quentrec, B. Simulation of diatomic homonuclear liquids. Phys. Rev. A 7, 1092-1105 (1973)

1142. Hockney, R.W., Goel, S.P. & Eastwood, J.W. A 10000 particle molecular dynamics model with long range forces. Chem. Phys. Lett. 21, 589-591 (1973)

1143. Quentrec, B. & Brot, C. New method for searching for neighbors in molecular dynamics computations. J. Comput. Phys. 13, 430-432 (1973)

1144. Schofield, P. Computer simulation of the liquid state. Comput. Phys. Commun. 5, 17-23 (1973)

1145. Hockney, R.W., Goel, S.P. & Eastwood, J.W. Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14, 148-158 (1974)

1146. Finney, J.L. Long-range forces in molecular dynamics calculations on water. J. Comput. Chem. 28, 92-102 (1978)

1147. Eastwood, J.W., Hockney, R.W. & Lawrence, D.N. P3MDP - The three-dimensional periodic particle-particle/particle-mesh program. Comput. Phys. Commun. 19, 215-261 (1980)

1148. van Gunsteren, W.F., Berendsen, H.J.C., Colonna, F., Perahia, D., Hollenberg, J.P. & Lellouch, D. On searching neighbors in computer simulations of macromolecular systems. J. Comput. Chem. 5, 272-279 (1984)

1149. Boris, J. A vectorized “near neighbors” algorithm of order N using a monotonic logical grid. J. Comput. Phys. 66, 1-20 (1986)

1150. Yip, V. & Elber, R. Calculation of a list of neighbors in molecular dynamics simulations. J. Comput. Chem. 10, 921-927 (1989)

1151. Arnold, A. & Mauser, N. An efficient method for bookkeeping next neighbours in molecular dynamics simulations. Comput. Phys. Commun. 59, 267-275 (1990)

1152. Chialvo, A.A. & Debenedetti, P.G. On the use of the Verlet neighbor list in molecular dynamics. Comput. Phys. Commun. 60, 215-224 (1990)

1153. Chialvo, A.A. & Debenedetti, P.G. On the performance of an automated Verlet neighbor list algorithm. Comput. Phys. Commun. 64, 15-18 (1991)

1154. Chialvo, A.A. & Debenedetti, P.G. An automated Verlet neighbor list algorithm with a multiple time-step approach for the simulation of large systems. Comput. Phys. Commun. 70, 467-477 (1992)

1155. Everaers, R. & Kremet, K. A fast grid search algorithm for molecular dynamics simulations with short-range interactions. Comput. Phys. Commun. 81, 19-55 (1994)

1156. Forester, T. & Smith, W. On multiple time-step algorithms and the Ewald sum. Mol. Simul. 13, 195-204 (1994)

1157. Pütz, M. & Kolb, A. Optimization techniques for parallel molecular dynamics using domain decomposition. Comput. Phys. Commun. 113, 145-167 (1998)

1158. Morales, J.J. & Nuevo, M.J. A technique for improving the linked-cell method. Comput. Phys. Commun. 60, 195-199 (1990)

1159. Morales, J.J. & Nuevo, M.J. Comparison of linked-cell and neighbourhood tables on a range of computers. Comput. Phys. Commun. 69, 223-228 (1992)

1160. Mattson, W. & Rice, B.M. Near-neighbour calculations using a modified cell-linked list method. Comput. Phys. Commun. 119, 135-148 (1999)

1161. Lindahl, E., Hess, B. & van der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306-317 (2001)

1162. Petrella, R.J., Andricioeaei, I., Brooks, B.R. & Karplus, M. An improved method for nonbonded list generation: Rapid determination of near-neighbor pairs. J. Comput. Chem. 24, 222-231 (2003)

1163. Heinz, T.N. & Hünenberger, P.H. A fast pairlist-construction algorithm for molecular simulations under periodic boundary conditions. J. Comput. Chem. 25, 1474-1486 (2004)

1164. Kräutler, V. & Hünenberger, P.H. A multiple-timestep algorithm compatible with a large number of distance classes and an arbitrary distance dependence of the timestep size for the fast evaluation of non-bonded interactions in molecular simulations. J. Comput. Chem. 124, 1163-1176 (2006)

1165. Adams, D.J. Computer simulation of ionic systems: The distorting effects of the boundary conditions. Chem. Phys. Lett. 62, 329-332 (1979)

1166. Brooks III, C.L., Pettitt, B.M. & Karplus, M. Structural and energetic effect of truncating the long-ranged interactions in ionic and polar fluids. J. Chem. Phys. 83, 5897-5908 (1985)

1167. Brooks III, C.L. Thermodynamics of ionic solvation: Monte Carlo simulations of aqueous chloride and bromide ions. J. Phys. Chem. 90, 6680-6684 (1986)

1168. Linse, P. & Andersen, H.C. Truncation of Coulombic interactions in computer simulations of liquids. J. Chem. Phys. 85, 3027-3041 (1986)

1169. Brooks III, C.L. The influence of long-range force truncation on the thermodynamics of aqueous ionic solutions. J. Chem. Phys. 86, 5156-5162 (1987)

1170. Madura, J.D. & Pettitt, B.M. Effect of truncating long-range interactions in aqueous ionic solution simulations. Chem. Phys. Lett. 150, 105-108 (1988)

1171. Straatsma, T.P. & Berendsen, H.J.C. Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations. J. Chem. Phys. 89, 5876-5886 (1988)

1172. Kuwajima, S. & Warshel, A. The extended Ewald method: A general treatment of long-range electrostatic interactions in microscopic simulations. J. Chem. Phys. 89, 3751-3759 (1988)

1173. Loncharich, R.J. & Brooks, B.R. The effects of truncating long-range forces on protein dynamics. Proteins: Struct. Funct. Genet. 6, 32-45 (1989)

1174. Sloth, P. & Sørensen, T.S. Monte Carlo calculations of chemical potentials in ionic fluids by application of Widom's formula: Correction for finite-system effects. Chem. Phys. Lett. 173, 51-56 (1990)

1175. Beglov, D.B. & Lipanov, A.A. Charge grouping approaches to calculation of electrostatic forces in molecular dynamics of macromolecules. J. Biomol. Struct. Dyn. 9, 205-214 (1991)

1176. Bader, J.S. & Chandler, D. Computer simulation study of the mean force between ferrous and ferric ions in water. J. Phys. Chem. 96, 6423-6427 (1992)

1177. Lee, F.S. & Warshel, A. A local reaction field method for fast evaluation of long-range electrostatic interactions in molecular simulations. J. Chem. Phys. 97, 3100-3107 (1992)

1178. Schreiber, H. & Steinhauser, O. Molecular dynamics studies of solvated polypeptides: Why the cut-off scheme does not work. Chem. Phys. 168, 75-89 (1992)

1179. Schreiber, H. & Steinhauser, O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry 31, 5856-5860 (1992)

1180. Schreiber, H. & Steinhauser, O. Taming cut-off induced artifacts in molecular dynamics studies of solvated polypeptides. J. Mol. Biol. 228, 909-923 (1992)

1181. York, D.M., Darden, T.A. & Pedersen, L.G. The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. J. Chem. Phys. 99, 8345-8348 (1993)

1182. Steinbach, P.J. & Brooks, B.R. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem. 15, 667-683 (1994)

1183. Niedermeier, C. & Tavan, P. A structure adapted multipole method for electrostatic interactions in protein dynamics. J. Chem. Phys. 101, 734-748 (1994)

1184. Perera, L., Essmann, U. & Berkowitz, M.L. Effect of the treatment of long-range forces on the dynamics of ions in aqueous solutions. J. Chem. Phys. 102, 450-456 (1994)

1185. Tironi, I.G., Sperb, R., Smith, P.E. & van Gunsteren, W.F. A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 102, 5451-5459 (1995)

1186. Auffinger, P. & Beveridge, D.L. A simple test for evaluating the truncation effects in simulations of systems involving charged groups. Chem. Phys. Lett. 234, 413-415 (1995)

1187. Gabdoulline, R.R. & Zheng, C. Effect of the cutoff center on the mean potential and pair distribution functions in liquid water. J. Comput. Chem. 16, 1428-1433 (1995)

1188. Cheatham III, T.E., Miller, J.L., Fox, T., Darden, T.A. & Kollman, P.A. Molecular dynamics simulations of solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J. Am. Chem. Soc. 117, 4193-4194 (1995)

1189. Louise-May, S., Auffinger, P. & Westhof, E. Calculations of nucleic acid conformations. Curr. Opin. Struct. Biol. 6, 289-298 (1996)

1190. del Buono, G.S., Figueirido, F.E. & Levy, R.M. Dielectric response of solvent surrounding an ion pair: Ewald potential versus spherical truncation. Chem. Phys. Lett. 263, 521-529 (1996)

1191. Kalko, S.G., Sese, G. & Padro, J.A. On the effect of truncating the electrostatic interactions: Free energies of ion hydration. J. Chem. Phys. 104, 9578-9585 (1996)

1192. Resat, H. & McCammon, J.A. Free energy simulations: Correcting for electrostatic cutoffs by use of the Poisson equation. J. Chem. Phys. 104, 7645-7651 (1996)

1193. Resat, H. & McCammon, J.A. Correcting for electrostatic cutoffs in free energy simulations: Towards consistency between simulations with different cutoffs. J. Chem. Phys. 108, 9617-9623 (1998)

1194. Baker, N.A., Hünenberger, P.H. & McCammon, J.A. Polarization around an ion in a dielectric continuum with truncated electrostatic interactions. J. Chem. Phys. 110, 10679-10692 (1999)

1195. Zuegg, J. & Gready, J.E. Molecular dynamics simulations of human prion protein: Importance of correct treatment of electrostatic interactions. Biochemistry 38, 13862-13876 (1999)

1196. de Souza, O.N. & Ornstein, R.L. MD simulations of a protein-protein dimer PME electrostatics far superior to standard cutoff model. J. Biomol. Struct. Dyn. 16, 1205-1218 (1999)

1197. Norberg, J. & Nilsson, L. On the truncation of long-range electrostatic interactions in DNA. Biophys. J. 79, 1537-1553 (2000)

1198. Higo, J., Kono, H., Nakamura, H. & Sarai, A. Solvent density and long-range dipole field around a DNA-binding protein studied by molecular dynamics. Proteins: Struct. Funct. Genet. 40, 193-206 (2000)

1199. Baker, N.A., Hünenberger, P.H. & McCammon, J.A. Erratum : "Polarization around an ion in a dielectric continuum with truncated electrostatic interactions" [J. Chem. Phys. 110, 10679-10692 (1999)]. J. Chem. Phys. 113, 2510-2511 (2000)

1200. Walser, R., Hünenberger, P.H. & van Gunsteren, W.F. Comparison of different schemes to treat long-range electrostatic interactions in molecular dynamics simulations of a protein crystal. Proteins: Struct. Funct. Genet. 44, 509-519 (2001)

1201. Ledauphin, V. & Vergoten, G. New nonbonded interactions calculation strategy for rectangular systems. I. Preliminary molecular dynamics study of solvated Na+ ion. Biopolymers 57, 373-382 (2001)

1202. Tieleman, D.P., Hess, B. & Sansom, M.S.P. Analysis and evaluation of channel models: Simulation of alamethicin. Biophys. J. 83, 2393-2407 (2002)

1203. Anézo, C., de Vries, A.H., Höltje, H.-D., Tieleman, D.P. & Marrink, S.-J. Methodological issues in lipid bilayer simulations. J. Phys. Chem. B 107, 9424-9433 (2003)

1204. Patra, M., Karttunen, M., Hyvönen, M.T., Falck, E., Lindqvist, P. & Vattulainen, I. Molecular dynamics simulations of lipid bilayers: Major artifacts due to truncating electrostatic interactions. Biophys. J. 84, 3636-3645 (2003)

1205. Patra, M., Karttunen, M., Hyvönen, M.T., Falck, E. & Vattulainen, I. Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J. Phys. Chem. B 108, 4485-4494 (2004)

1206. Monticelli, L. & Colombo, G. The influence of simulation conditions in molecular dynamics investigations of model β-sheet peptides. Theor. Chem. Acc. 112, 145-157 (2004)

1207. Baumketner, A. & Shea, J.-E. The influence of different treatments of electrostatic interactions on the thermodynamics of folding of peptides. J. Phys. Chem. B 109, 21322-21328 (2005)

1208. Beck, D.A.C., Armen, R.S. & Daggett, V. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides. Biochemistry 44, 609-616 (2005)

1209. Lins, R.D. & Röthlisberger, U. Influence of long-range electrostatic treatments on the folding of the N-terminal H4 histone tail peptide. J. Chem. Theory Comput. 2, 246-250 (2006)

1210. Monticelli, L., Simões, C., Belvisi, L. & Colombo, G. Assessing the influence of electrostatic schemes on molecular dynamics simulations of secondary structure forming peptides. J. Phys. Condensed Mat. 18, 329-345 (2006)

1211. Fennell, C.J. & Gezelter, J.D. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 124, 234104/1-234104/12 (2006)

1212. Cordomí, A., Edholm, O. & Perez, J. Effect of different treatments of long-range interactions and sampling conditions in molecular dynamic simulations of rhodopsin embedded in a dipalmitoyl phosphatidylcholine bilayer. J. Comp. Chem. 28, 1017-1030 (2007)

1213. Barker, J.A. & Watts, R.O. Monte Carlo studies of the dielectric properties of water-like models. Mol. Phys. 26, 789-792 (1973)

1214. Barker, J.A. Reaction field, screening, and long-range interactions in simulations of ionic and dipolar systems. Mol. Phys. 83, 1057-1064 (1994)

1215. Mathias, G., Egwolf, B., Nonella, M. & Tavan, P. A fast multipole method combined with a reaction field for long-range electrostatics in molecular dynamics simulations: The effects of truncation on the properties of water. J. Chem. Phys. 118, 10847-10860 (2003)

1216. Hummer, G., Soumpasis, D.M. & Neumann, M. Pair correlation in an NaCl-SPC water model. Simulations versus extended RISM computations. Mol. Phys. 77, 769-785 (1992)

1217. Walser, R., Hünenberger, P.H. & van Gunsteren, W.F. Molecular dynamics simulations of a double unit cell in a protein. Proteins: Struct. Funct. Genet. 48, 327-340 (2002)

1218. Nina, M. & Simonson, T. Molecular dynamics of the tRNAAla acceptor stem: Comparison between continuum reaction field and particle-mesh Ewald electrostatic treatment. J. Phys. Chem. B 106, 3696-3705 (2002)

1219. Kräutler, V. & Hünenberger, P.H. Explicit-solvent molecular dynamics simulations of a DNA tetradecanucleotide duplex: Lattice-sum versus reaction-field electrostatics. Mol. Simul. 34, 491-499 (2008)

1220. Müller-Plathe, F. YASP - A molecular simulation package. Comput. Phys. Commun. 78, 77-94 (1993)

1221. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. & Karplus, M. CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J. Comput. Chem. 4, 187-217 (1983)

1222. Stote, R.H., States, D.J. & Karplus, M. On the treatment of electrostatic interactions in biomolecular simulations. J. Chim. Physique 88, 2419-2433 (1991)

1223. Ding, H.-Q., Karasawa, N. & Goddard III, W.A. Optimal spline cutoffs for Coulomb and van der Waals interactions. Chem. Phys. Lett. 193, 197-201 (1992)

1224. Guenot, J. & Kollman, P.A. Conformational and energetic effects of truncating nonbonded interactions in an aqueous protein dynamics simulation. J. Comput. Chem. 14, 295-311 (1993)

1225. Adams, D.J. & Dubey, G.S. Taming the Ewald sum in computer simulation of charged systems. J. Comput. Phys. 72, 156-176 (1987)

1226. Prevost, M., van Belle, D., Lippens, G. & Wodak, S. Computer simulations of liquid water: treatment of long-range interactions. Mol. Phys. 71, 587-603 (1990)

1227. Hummer, G. & Soumpasis, D.M. Computation of the water density distribution at the ice-water interface using the potentials-of-mean-force expansion. Phys. Rev. E 49, 591-596 (1994)

1228. Hummer, G. & Soumpasis, D.M. Computer simulation of aqueous Na-Cl electrolytes. J. Phys.: Condens. Matter 6, A141-A144 (1994)

1229. Yakub, E. & Ronchi, C. An efficient method for computation of long-ranged Coulomb forces in computer simulation of ionic fluids. J. Chem. Phys. 119, 11556-11560 (2003)

1230. Wu, X. & Brooks, B.R. Isotropic periodic sum: A method for the calculation of long-range interactions. J. Chem. Phys. 122, 044107/1-044107/18 (2005)

1231. Yakub, E. & Ronchi, C. A new method for computation of long ranged Coulomb forces in computer simulation of disordered systems. J. Low Temp. Phys. 139, 633-643 (2005)

1232. Yakub, E. Effective computer simulation of strongly coupled Coulomb fluids. J. Phys. A: Math. Gen. 39, 4643-4649 (2006)

1233. Wolf, D., Keblinski, S.R., Phillpot, S.R. & Eggebrecht, J. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r-1 summation. J. Chem. Phys. 110, 8254-8282 (1999)

1234. Zahn, D., Schilling, B. & Kast, S.M. Enhancement of the Wolf damped Coulomb potential: Static, dynamic and dielectric properties of liquid water from molecular simulations. J. Phys. Chem. B 106, 10725-10732 (2002)

1235. Ma, Y. & Garofalini, S.H. Modified Wolf electrostatic summation: Incorporating an empirical charge overlap. Mol. Simul. 31, 739-748 (2005)

1236. Tasaki, K., McDonald, S. & Brady, J.W. Observations concerning the treatment of long-range interactions in molecular dynamics simulations. J. Comp. Chem. 14, 278-284 (1993)

1237. Garemyr, R. & Elofsson, A. Study of the electrostatic treatment in molecular dynamics simulations. Proteins: Struct. Funct. Genet. 37, 417-428 (1999)

1238. Brunsteiner, M. & Boresch, S. Influence of the treatment of electrostatic interactions on the results of free energy calculations of dipolar systems. J. Chem. Phys. 112, 6953-6955 (2000)

1239. Mark, P. & Nilsson, L. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations. J. Comput. Chem. 23, 1211-1219 (2002)

1240. Luty, B.A. & van Gunsteren, W.F. Calculating electrostatic interactions using particle-particle-particle-mesh method with non-periodic long-range interactions. J. Phys. Chem. 100, 2581-2587 (1996)

1241. Kratky, K.W. New boundary conditions for computer experiments of thermodynamic systems. J. Comput. Phys. 37, 205-217 (1980)

1242. Kratky, K.W. & Schreiner, W. Computational techniques for spherical boundary conditions. J. Comput. Phys. 47, 313-320 (1982)

1243. Schreiner, W. & Kratky, K.W. Finiteness effects in computer simulations of fluids with spherical boundary conditions. Mol. Phys. 50, 435-452 (1983)

1244. Caillol, J.M. & Levesque, D. Numerical simulations of homogeneous and inhomogeneous ionic systems : An efficient alternative to the Ewald method. J. Chem. Phys. 94, 597-607 (1991)

1245. Caillol, J.M. Structural, thermodynamic, and electrical properties of polar fluids and ionic solutions on a hypersphere: Theoretical aspects. J. Chem. Phys. 96, 1455-1476 (1992)

1246. Caillol, J.M. & Levesque, D. Structural, thermodynamic, and electrical properties of polar fluids and ionic solutions on a hypersphere: Results of simulations. J. Chem. Phys. 96, 1477-1483 (1992)

1247. Caillol, J.M. A new potential for the numerical simulation of electrolyte solutions on a hypersphere. J. Chem. Phys. 99, 8953-8963 (1993)

1248. Caillol, J.M. Numerical simulations of Coulomb systems: A comparison between hyperspherical and periodic boundary conditions. J. Chem. Phys. 111, 6528-6537 (1999)

1249. Hanassab, S. & Vandernoot, T.J. Spherical boundary conditions: A finite and system size independent geometry for simulations of electrolytic liquids. Mol. Simul. 2, 527-533 (2003)

1250. Hanassab, S. & Vandernoot, T.J. Monte Carlo simulations of primitive models (PM) electrolytes in non-Euclidean geometries. Mol. Simul. 30, 301-311 (2004)

1251. Råsmark, P.J., Ekholm, T. & Elvingson, C. Computer simulations of polymer chain structure and dynamics on a hypersphere in four-space. J. Chem. Phys. 122, 184110/1-184110/8 (2005)

1252. Williams, D.E. Accelerated convergence of crystal-lattice potential sums. Acta Crystallogr. A 27, 452-455 (1971)

1253. Karasawa, N. & Goddard III, W.A. Acceleration of convergence for lattice sums. J. Phys. Chem. 93, 7320-7327 (1989)

1254. Monkenbusch, M. A set of routines for efficient and accurate computation of lattice sums of 1/rn-potentials. Comput. Phys. Commun. 67, 343-355 (1991)

1255. Ding, H.-Q., Karasawa, N. & Goddard III, W.A. Atomic level simulation on a million particles: The cell multipole method for Coulomb and London nonbond interactions. J. Chem. Phys. 97, 4309-4315 (1992)

1256. Chen, Z.-M., Çaǧin, T. & Goddard III, W.A. Fast Ewald sums for general van der Waals potentials. J. Comput. Chem. 18, 1365-1370 (1997)

1257. Ko, G.H. & Fink, W.H. Rapidly converging lattice sums for nonelectrostatic interactions. J. Comput. Chem. 23, 477-483 (2002)

1258. Ou-Yang, W.-Z., Lu, Z.-Y., Shi, T.-F., Sun, Z.-Y. & An, L.-J. A molecular dynamics simulation study of the dependence of Lennard-Jones gas-liquid phase diagram on the long-range part of the interactions. J. Chem. Phys. 123, 234502/1-234502/8 (2005)

1259. Lopez-Lemus, J., Robero-Bastida, M., Darden, T.A. & Alejandre, J. Liquid-vapour equilibrium of n-alkanes using interface simulations. Mol. Phys. 104, 2413-2421 (2006)

1260. Shi, B., Sinha, S. & Dir, V.K. Molecular dynamics simulation of the density and surface tension by particle-particle particle-mesh method. J. Chem. Phys. 124, 204715/1-204715/7 (2006)

1261. In't Veld, P.J., Ismail, A.E. & Grest, G.S. Application of Ewald summation to long-range dispersion forces. J. Chem. Phys. 127, 144711/1-144711/8 (2007)

1262. Chapela, G.A., Saville, G., Thompson, S.M. & Rowlinson, J.S. Computer simulation of a gas-liquid surface. J. Chem. Soc. Farad. Trans. 73, 1133-1144 (1977)

1263. Blokhuis, E.M., Bedeaux, D., Holcomb, C.D. & Zollweg, J.A. Tail corrections to the surface-tension of a Lennard-Jones liquid-vapor interface. Mol. Phys. 85, 665-669 (1995)

1264. Lagüe, P., Pastor, R.W. & Brooks, B.R. Pressure-based long-range correction for Lennard-Jones interactions in molecular dynamics simulations: Application to alkanes at interfaces. J. Phys. Chem. B 108, 363-368 (2004)

1265. Janeček, J. Long range correction in inhomogeneous simulations. J. Phys. Chem. B 110, 6264-6269 (2006)

1266. Janeček, J. Interfacial properties of cyclic hydrocarbons: A Monte Carlo study. J. Phys. Chem. B 110, 6916-6923 (2006)

1267. Shen, V.K., Mountain, R.D. & Errington, J.R. Comparative study of the effect of tail corrections on surface tension determined by molecular simulation. J. Phys. Chem. B 111, 6198-6207 (2007)

1268. Shirts, M.R., Mobley, D.L., Chodera, J.D. & Pande, V.S. Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J. Phys. Chem. B 111, 13052-13063 (2007)

1269. Ghoufi, A., Goujon, F., Lachet, V. & Malfreyt, P. Expressions for local contributions to the surface tension from the virial route. Phys. Rev. E 77, 031601/1-031601/13 (2008)

1270. Pettitt, B.M. & Rossky, P.J. Integral-equation predictions of liquid-state structure for waterlike intermolecular potentials. J. Chem. Phys. 77, 1451-1457 (1982)

1271. Neria, E., Fischer, S. & Karplus, M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 105, 1902-1921 (1996)

1272. Glättli, A., Daura, X. & van Gunsteren, W.F. Derivation of an improved simple point charge model for liquid water: SPC/A and SPC/L. J. Chem. Phys. 116, 9811-9828 (2002)

1273. Glättli, A., Daura, X. & van Gunsteren, W.F. A novel approach for designing simple point charge models for liquid water with three interaction sites. J. Comput. Chem. 24, 1087-1096 (2003)

1274. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F. & Hermans, J. Interaction models for water in relation to protein hydration. In: Intermolecular Forces. Pullman, B., Ed. Reidel, Dordrecht, The Netherlands., pp 331-342 (1981)

1275. Berendsen, H.J.C., Grigera, J.R. & Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269-6271 (1987)

1276. Jorgensen, W.L. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc. 103, 335-340 (1981)

1277. Jorgensen, W.L. Quantum and statistical mechanical studies of liquids. 24. Revised TIPS for simulations of liquid water and aqueous solutions. J. Chem. Phys. 77, 4156-4163 (1982)

1278. Horn, H.W., Swope, W.C., Pitera, J.W., Madura, J.D., Dick, T.J., Hura, G.L. & Head-Gordon, T. Development of an improved four-site water model for biomolecular simulations: TIP4PEW. J. Chem. Phys. 120, 9665-9678 (2004)

1279. Mahoney, M.W. & Jorgensen, W.L. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112, 8910-8922 (2000)

1280. Rick, S.W. A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums. J. Chem. Phys. 120, 6085-6093 (2004)

1281. Rowlinson, J.S. The lattice energy of ice and the second virial coefficient of water vapour. Trans. Faraday Soc. 47, 120-129 (1951)

1282. Stillinger, F.H. & Rahman, A. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60, 1545-1557 (1974)

1283. Carravetta, V. & Clementi, E. Water-water interaction potential - An approximation of the electron correlation contribution by a functional of the SCF density matrix. J. Chem. Phys. 81, 2646-2651 (1984)

1284. Jorgensen, W.L. & Jenson, C. Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density. J. Comput. Chem. 19, 1179-1186 (1998)

1285. Barker, J.A. & Watts, R.O. Structure of water; A Monte Carlo calculation. Chem. Phys. Lett. 3, 144-145 (1969)

1286. Peng, Z.W., Ewig, C.S., Hwang, M.-J., Waldman, M. & Hagler, A.T. Derivation of class II force fields. 4. van der Waals parameters of alkali metal cations and halide anions. J. Phys. Chem. A 101, 7243-7252 (1997)

1287. Engelsen, S.B., Fabricius, J. & Rasmussen, K. The consistent force-field. 1. Methods and strategies for optimization of empirical potential-energy functions. Acta Chem. Scand. 48, 548-552 (1994)

1288. Engelsen, S.B., Fabricius, J. & Rasmussen, K. The consistent force-field. 2. An optimized set of potential-energy functions for the alkanes. Acta Chem. Scand. 48, 553-565 (1994)

1289. Reif, M.M. & Hünenberger, P.H. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones parameter sets for the alkali and halide ions in water. J. Chem. Phys. 134, 144104/1-144104/25 (2011)

1290. Srivastava, B.N. & Srivastava, K.P. Combination rules for potential parameters of unlike molecules on exp-6 model. J. Chem. Phys. 24, 1275-1276 (1956)

1291. Saxena, S.C. & Mathur, B.P. Central and molecular potentials, combination rules and properties of gases and gas mixtures. Chem. Phys. Lett. 1, 224-226 (1967)

1292. Calvin, D.W. & Reed, T.M. III Mixture rules for the Mie (n,6) intermolecular pair potential and the Dymond-Alder pair potential. J. Chem. Phys. 54, 3733-3738 (1971)

1293. Hogervorst, W. Transport and equilibrium properties of simple gases and forces between like and unlike atoms. Physica 51, 77-89 (1971)

1294. Kong, C.L. & Chakrabarty, M.R. Combining rules for intermolecular potential parameters. 3. Application to exp-6 potential. J. Phys. Chem. 77, 2668-2670 (1973)

1295. Brumer, P. Combination rules and correlations in repulsive potential parameters for alkali-halide diatomics. Phys. Rev. A 10, 1-8 (1974)

1296. Wiese, H. & Brickmann, J. Lennard-Jones (12,6) potentials for the non-ionic interaction of alkali cations and halide anions - a test of different combination rules. Ber. Bunsen Ges. Phys. Chem. Chem. Phys. 93, 1464-1467 (1989)

1297. van Gunsteren, W.F., Billeter, S.R., Eising, A.A., Hünenberger, P.H., Krüger, P., Mark, A.E., Scott, W.R.P. & Tironi, I.G. Biomolecular simulation: The GROMOS96 manual and user guide. Verlag der Fachvereine, Zürich, Switzerland (1996)

1298. Zarkova, L., Hohm, U. & Damyanova, M. Comparison of Lorentz-Berthelot and Tang-Toennies mixing rules using an isotropic temperature-dependent potential applied to the thermophysical properties of binary gas mixtures of CH4, CF4, SF6, and C(CH3)4 with Ar, Kr, and Xe. Int. J. Thermophys. 25, 1775-1798 (2004)

1299. Al-Matar, A.K. & Rockstraw, D.A. A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. J. Comp. Chem. 25, 660-668 (2004)

1300. Good, R.J. & Hope, C.J. New combining rule for intermolecular distances in intermolecular potential functions. J. Chem. Phys. 53, 540-543 (1970)

1301. Good, R.J. & Hope, C.J. Test of combining rules for intermolecular distances - potential function constants from second virial coefficients. J. Chem. Phys. 55, 111-116 (1971)

1302. Mirskaya, K.V. Combining rules for interatomic potential functions of Buckingham form. Tetrahedron 29, 679-682 (1973)

1303. Lorentz, H.A. Über die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Phys. 248, 127-136 (1881)

1304. Fuchs, R.R., Mccourt, F.R.W., Thakkar, A.J. & Grein, F. Two new anisotropic potential-energy surfaces for N2-He. The use of Hartree-Fock SCF calculations and a combining rule for anisotropic long-range dispersion coefficients. J. Phys. Chem. 88, 2036-2045 (1984)

1305. Berthelot, D. Sur le mélange des gaz. Comptes rendus de l'académie des sciences Paris 126, 1703-1706 (1889)

1306. Tada, Y., Hiraoka, S., Uemura, T. & Harada, M. Law of corresponding states of uniunivalent molten-salt mixtures. 1. Mixing rule of pair potential parameters. Indust. Engineer. Chem. Res. 29, 1509-1516 (1990)

1307. Carlton, T.S. & Gittins, C.M. Internuclear distance and repulsive potential between noble-gas atoms - combining rules based on repulsive force. J. Chem. Phys. 94, 2614-2617 (1991)

1308. Dedkov, G.V. Effective rules for combination of interatomic interaction potentials and forces. Tech. Phys. Lett. 23, 645-648 (1997)

1309. Srivastava, B.N. & Madan, M.P. Thermal diffusion of gas mixtures and forces between unlike molecules. Proc. Phys. Soc. Lond. A 66, 278-287 (1953)

1310. Fender, B.E.F. & Halsey, G.D. Second virial coefficients of argon, krypton, and argon-krypton mixtures at low temperatures. J. Chem. Phys. 36, 1881-1888 (1962)

1311. Kong, C.L. Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12-6) potential and the Morse potential. J. Chem. Phys. 59, 2464-2467 (1973)

1312. Kong, C.L. Combining rules for intermolecular potential parameters. I. Rules for the Dymond-Alder potential. J. Chem. Phys. 59, 1953-1958 (1973)

1313. Chrisman, D.C. & Leach, J.W. Intermolecular parameters and combining rules for square-well potential. Indust. Engineer. Chem. Fund. 12, 423-431 (1973)

1314. Peña, M.D., Pando, C. & Renuncio, J.A.R. Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy. J. Chem. Phys. 76, 325-332 (1982)

1315. Peña, M.D., Pando, C. & Renuncio, J.A.R. Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions. J. Chem. Phys. 76, 333-339 (1982)

1316. Tang, K.T. & Toennies, J.P. New combining rules for well parameters and shapes of the van der Waals potential of mixed rare-gas systems. Z. Physik D 1, 91-101 (1986)

1317. Bzowski, J., Mason, E.A. & Kestin, J. On combination rules for molecular van der Waals potential-well parameters. Int. J. Thermophys. 9, 131-143 (1988)

1318. Ihm, G., Cole, M.W., Toigo, F. & Klein, J.R. Charge-overlap model of physical interactions and a combining rule for unlike systems. Phys. Rev. A 42, 5244-5252 (1990)

1319. Waldman, M. & Hagler, A.T. New combining rules for rare gas van der Waals parameters. J. Comp. Chem. 14, 1077-1084 (1993)

1320. Sandler, S.I. & Wheatley, J.K. Intermolecular potential parameter combining rules for Lennard-Lones 6-12 potential. Chem. Phys. Lett. 10, 375-378 (1971)

1321. Buckingham, A.D., Fowler, P.W. & Hutson, J.M. Theoretical studies of van der Waals molecules and intermolecular forces. Chem. Rev. 88, 963-988 (1988)

1322. Lide, D.R. CRC Handbook of Chemistry and Physics. Edition 83. CRC Press, Boca Raton, Florida (2002)

1323. Becke, A.D. & Johnson, E.R. Exchange-hole dipole moment and the dispersion interaction: High-order dispersion coefficients. J. Chem. Phys. 124, 014104/1-014104/6 (2006)

1324. Chandrasekhar, J., Spellmeyer, D.C. & Jorgensen, W.L. Energy component analysis for dilute aqueous solutions of Li+, Na+, F- and Cl- ions. J. Am. Chem. Soc. 106, 903-910 (1984)

1325. Pettitt, B.M. & Rossky, P.J. Alkali halides in water: Ion-solvent correlations and ion-ion potentials of mean force at infinite dilution. J. Chem. Phys. 84, 5836-5844 (1986)

1326. Roux, B. Valence selectivity of the gramicidin channel: A molecular dynamics free energy perturbation study. Biophys. J. 71, 3177-3185 (1996)

1327. Borodin, O., Bell, R.L., Bedrov, D. & Smith, G.D. Polarizable and nonpolarizable potentials for K+ cation in water. Chem. Phys. Lett. 336, 292-302 (2001)

1328. Weerasinghe, S. & Smith, P.E. A Kirkwood-Buff derived force field for sodium chloride in water. J. Chem. Phys. 119, 11342-11349 (2003)

1329. Jensen, K.P. & Jorgensen, W.L. Halide, ammonium and alkali metal ion parameters for modeling aqueous solutions. J. Chem. Theory Comput. 2, 1499-1509 (2006)

1330. Alejandre, J. & Hansen, J.-P. Ions in water: From ion clustering to crystal nucleation. Phys. Rev. E 76, 061505/1-061505/5 (2007)

1331. Joung, I.S. & Cheatham III, T.E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020-9041 (2008)

1332. Fumi, F.G. & Tosi, M.P. Ionic sizes and Born repulsive parameters in the NaCl-Type alkali halides - I. J. Phys. Chem. Solids 25, 31-43 (1964)

1333. van Gunsteren, W.F. GROMOS Reference Manual. BIOMOS B.V., Groningen, The Netherlands. (1987)

1334. Lybrand, T.P., Ghosh, I. & McCammon, J.A. Hydration of chloride and bromide anions: Determination of relative free-energy by computer simulation. J. Am. Chem. Soc. 107, 7793-7794 (1985)

1335. Caldwell, J., Dang, L.X. & Kollman, P. Implementation of nonadditive intermolecular potentials by use of molecular dynamics: Development of a water-water potential and water-ion cluster interactions. J. Am. Chem. Soc. 112, 9144-9147 (1990)

1336. Yu, H., Whitfield, T.W., Harder, E., Lamoureux, G., Vorobyov, I., Anisimov, V.M., MacKerell Jr., A.D. & Roux, B. Simulating monovalent and divalent ions in aqueous solution using a Drude polarizable force field. J. Chem. Theory Comput. 6, 774-786 (2010)

1337. Reynolds, C.A., King, P.M. & Richards, W.G. Free energy calculations in molecular biophysics. Mol. Phys. 76, 251-275 (1992)

1338. Straatsma, T.P. & McCammon, J.A. Computational alchemy. Annu. Rev. Phys. Chem. 43, 407-435 (1992)

1339. Roux, B. The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun. 91, 275-282 (1994)

1340. van Gunsteren, W.F. & Mark, A.E. Validation of molecular dynamics simulation J. Chem. Phys. 108, 6109-6116 (1998)

1341. Mark, A.E. Free energy perturbation calculations. In: Encyclopaedia of computational chemistry. von Ragué Schleyer, P., Ed. Wiley, New York, USA, pp 1070-1083 (1998)

1342. Chipot, C. & Pearlman, D.A. Free energy calculations. The long and winding gilded road. Mol. Simul. 28, 1-12 (2002)

1343. Rodinger, T. & Pomès, R. Enhancing the accuracy, the efficiency and the scope of free energy simulations. Curr. Opin. Struct. Biol. 15, 164-170 (2005)

1344. Shen, T. & Hamelberg, D. A statistical analysis of the precision of reweighting-based simulations. J. Chem. Phys. 129, 034103/1-034103/9 (2008)

1345. Christ, C.D., Mark, A.E. & van Gunsteren, W.F. Basic ingredients of free energy calculations: A review. J. Comput. Chem. 31, 1569-1582 (2010)

1346. Hansen, H.S. & Hünenberger, P.H. Ball-and-stick local elevation umbrella sampling: molecular simulations involving enhanced sampling within conformational or alchemical subspaces of low internal dimensionalities, minimal irrelevant volume and problem-adapted geometries. J. Chem. Theory Comput. 6, 2622-2646 (2010)

1347. Allinger, N.L. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551-8566 (1989)

1348. Allinger, N.L. Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics. J. Am. Chem. Soc. 111, 8566-8575 (1989)

1349. Allinger, N.L. Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons. J. Am. Chem. Soc. 111, 8576-8582 (1989)

1350. Allinger, N.L., Yuh, Y.H. & Lii, J.-H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551-8566 (1989)

1351. Lii, J.-H. & Allinger, N.L. The MM3 force field for hydrocarbons. J. Am. Chem. Soc. 111, 8551-8588 (1989)

1352. Lii, J.-H. & Allinger, N.L. Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons. J. Am. Chem. Soc. 111, 8576-8582 (1989)

1353. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A. & Skiff, W.M. UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114, 10024-10035 (1992)

1354. Halgren, T.A. Merck molecular force field. 1. Basis, form, scope, parameterization, and performance of MMFF94. J. Comp. Chem. 17, 490-519 (1996)

1355. Halgren, T.A. Merck molecular force field. 2. MMFF94 van der waals and electrostatic parameters for intermolecular interactions. J. Comp. Chem. 17, 520-552 (1996)

1356. Halgren, T.A. Merck molecular force field. 3. Molecular geometries and vibrational frequencies for MMFF94. J. Comp. Chem. 17, 553-586 (1996)

1357. Halgren, T.A. & Nachbar, R.B. Merck molecular force field. 4. Conformational energies and geometries for MMFF94. J. Comp. Chem. 17, 587-615 (1996)

1358. Halgren, T.A. Merck molecular force field. 5. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Comp. Chem. 17, 616-641 (1996)

1359. Gaedt, K. & Holtje, H.D. Consistent valence force-field parameterization of bond lengths and angles with quantum chemical ab initio methods applied to some heterocyclic dopamine d-3-receptor agonists. J. Comp. Chem. 19, 935-946 (1998)

1360. Ritschl, F., Fait, M., Fiedler, K., Kohler, J.E.H., Kubias, B. & Meisel, M. An extension of the consistent valence force field (CVFF) with the aim to simulate the structures of vanadium phosphorus oxides and the adsorption of n-butane and of 1-butene on their crystal planes. Z. Anorg. Allg. Chem. 628, 1385-1396 (2002)

1361. Beutler, T.C., Mark, A.E., van Schaik, R., Gerber, P.R. & van Gunsteren, W.F. Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem. Phys. Lett. 222, 529-539 (1994)

1362. Zacharias, M., Straatsma, T.P. & McCammon, J.A. Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration. J. Chem. Phys. 100, 9025-9031 (1994)

1363. Huber, T., Torda, A.E. & van Gunsteren, W.F. Structure optimization combining soft-core interaction functions, the diffusion equation method, and molecular dynamics. J. Phys. Chem. A 101, 5926-5930 (1997)

1364. Shao, C.-S., Byrd, R., Eskow, E. & Schnabel, R.B. Global optimization for molecular clusters using a new smoothing approach. J. Global Optim. 16, 167-196 (2000)

1365. Pitera, J.W. & van Gunsteren, W.F. A Comparison of non-bonded scaling approaches for free energy calculations. Mol. Simul. 28, 45-65 (2002)

1366. Christen, M., Kunz, A.-P.E. & van Gunsteren, W.F. Sampling of rare events using hidden restraints. J. Phys. Chem. B 110, 8488-8498 (2006)

1367. Christen, M., Kunz, A.-P.E. & van Gunsteren, W.F. Erratum to: "Sampling of rare events using hidden restraints" [J. Phys. Chem. B 110, 8488-8498 (2006)] J. Phys. Chem. B 112, 11446-11446 (2008)

1368. Straatsma, T.P. & McCammon, J.A. Multiconfiguration thermodynamic integration. J. Chem. Phys. 95, 1175-1188 (1991)

1369. Chipot, C., Kollman, P.A. & Pearlman, D.A. Alternative approaches to potential of mean force calculations: free energy perturbation versus thermodynamic integration. Case study of some representative nonpolar interactions. J. Comput. Chem. 17, 1112-1131 (1996)

1370. Ciccotti, G. & Ferrario, M. Rare events by constrained molecular dynamics. J. Mol. Liq. 89, 1-18 (2000)

1371. Ciccotti, G. & Ferrario, M. Blue moon approach to rare events. Mol. Simul. 30, 787-793 (2004)

1372. Ciccotti, G., Kapral, R. & Vanden-Eijnden, E. Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. ChemPhysChem 6, 1809-1814 (2005)

1373. Kästner, J., Senn, H.M., Thiel, S., Otte, N. & Thiel, W. QM/MM free-energy perturbation compared to thermodynamic integration and umbrella sampling: Application to an enzymatic reaction. J. Chem. Theory Comput. 2, 452-461 (2006)

1374. Postma, J.P.M, Berendsen, H.J.C. & Haak, J.R. Thermodynamics of cavity formation in water. A molecular dynamics study. Faraday Symp. Chem. Soc. 17, 55-67 (1982)

1375. Straatsma, T.P., Berendsen, H.J.C. & Postma, J.P.M. Free energy of hydrophobic hydration: A molecular dynamics study of noble gases in water. J. Chem. Phys. 85, 6720-6727 (1986)

1376. Mitchell, M.J. & McCammon, J.A. Free energy difference calculations by thermodynamic integration: Difficulties in obtaining a precise value. J. Comput. Chem. 12, 271-275 (1991)

1377. Hermans, J. Simple analysis of noise and hysteresis in (slow-growth) free energy simulations. J. Phys. Chem. 95, 9029-9032 (1991)

1378. Wood, R.H. Estimation of errors in free energy calculations due to the lag between the Hamiltonian and the system configuration. J. Phys. Chem. 95, 4838-4842 (1991)

1379. Hu, H., Yun, R.H. & Hermans, J. Reversibility of free energy simulations: Slow growth may have a unique advantage (with a note on use of Ewald summation). Mol. Simul. 28, 67-80 (2002)

1380. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690-2693 (1997)

1381. Hummer, G. Fast-growth thermodynamic integration: Results for sodium ion hydration. Mol. Simul. 28, 81-90 (2002)

1382. Kosztin, I., Barz, B. & Janosi, L. Calculating potentials of mean force and diffusion coefficients from nonequilibrium processes without Jarzynski's equality. J. Chem. Phys. 124, 064106/1-064106/11 (2006)

1383. Piccinini, E., Ceccarelli, M., Affinito, F., Brunetti, R. & Jacoboni, C. Biased molecular simulations for free-energy mapping: A comparison on the KcsA channel as a test case. J. Chem. Theory Comput. 4, 173-183 (2008)

1384. Tobias, D.J. & Brooks III, C.L. Calculation of free energy surfaces using the methods of thermodynamic perturbation theory. Chem. Phys. Lett. 142, 472-476 (1987)

1385. Brooks III, C.L. Thermodynamic calculations on biological molecules. Int. J. Quantum Chem.: Quantum Biology Symposium 15, 221-234 (1988)

1386. Tobias, D.J., Brooks III, C.L. & Fleischman, S.H. Conformational flexibility in free energy simulations. Chem. Phys. Lett. 156, 256-260 (1989)

1387. Widom, B. Some topics in the theory of fluids. J. Chem. Phys. 39, 2808-2812 (1963)

1388. Kubo, R. Generalized cumulant expansion method. J. Phys. Soc. Jpn. 17, 1100-1120 (1962)

1389. Smith, P.E. & van Gunsteren, W.F. Predictions of free energy differences from a single simulation of the initial state. J. Chem. Phys. 100, 577-585 (1994)

1390. Hummer, G. & Szabo, A. Calculation of free-energy differences from computer simulations of initial and final states. J. Chem. Phys. 105, 2004-2010 (1996)

1391. Tidor, B. Simulated annealing on free energy surfaces by a combined molecular dynamics and Monte Carlo approach. J. Phys. Chem. 97, 1069-1073 (1993)

1392. Liu, Z. & Berne, B.J. Method for accelerating chain folding and mixing. J. Chem. Phys. 99, 6071-6077 (1993)

1393. Guo, Z. & Brooks III, C.L. Rapid screening of binding affinities: Applications of the λ-dynamics method to a trypsin-inhibitor system. J. Am. Chem. Soc. 120, 1920-1921 (1998)

1394. Leitgeb, M., Schröder, C. & Boresch, S. Alchemical free energy calculations and multiple conformational substates. J. Chem. Phys. 122, 084109/1-084109/15 (2005)

1395. Abrams, J.B., Rosso, L. & Tuckerman, M.E. Efficient and precise solvation free energies via alchemical adiabatic molecular dynamics. J. Chem. Phys. 125, 074115/1-074115/12 (2006)

1396. Han, K.-K. A new Monte Carlo method for estimating free energy and chemical potential. Phys. Lett. A 165, 28-32 (1992)

1397. Smith, G.R. & Bruce, A.D. A study of the multi-canonical Monte Carlo method J. Phys. A: Math. Gen. 28, 6623-6643 (1995)

1398. Escobeda, F.A. & de Pablo, J.J. Monte Carlo simulation of the chemical potential of polymers in an expanded ensemble. J. Chem. Phys. 103, 2703-2710 (1995)

1399. Son, H.S., Kim, S.-Y., Lee, J. & Han, K.-K. Application of the multiensemble sampling to the equilibrium folding of proteins. Bioinformatics 22, 1832-1837 (2006)

1400. Okazaki, S., Nakanishi, K. & Touhara, H. Monte Carlo studies of the hydrophobic hydration in dilute aqueous solutions of nonpolar solutes. J. Chem. Phys. 71, 2421-2429 (1979)

1401. Jorgensen, W.L. & Madura, J.D. Solvation and conformation of methanol in water. J. Am. Chem. Soc. 105, 1407-1413 (1983)

1402. Jorgensen, W.L., Gao, J. & Ravimohan, C. Monte Carlo simulations of alkanes in water: Hydration numbers and the hydrophobic effect. J. Phys. Chem. 89, 3470-3473 (1985)

1403. Smith, D.E. & Haymet, A.D.J. Free energy, entropy, and internal energy of hydrophobic interactions: Computer simulations. J. Chem. Phys. 98, 6445-6454 (1993)

1404. Lu, N., Kofke, D.A. & Woolf, T.B. Staging is more important than perturbation method for computation of enthalpy and entropy changes in complex systems. J. Phys. Chem. B 107, 5598-5611 (2003)

1405. Peter, C., Oostenbrink, C., van Dorp, A. & van Gunsteren, W.F. Estimating entropies from molecular dynamics simulations. J. Chem. Phys. 120, 2652-2661 (2004)

1406. Reif, M.M. & Hünenberger, P.H. Computation of methodology-independent single-ion solvation properties from molecular simulations. V. Calculation of solvation entropies. Manuscript in preparation (2011)

1407. Guillot, B., Guissani, Y. & Bratos, S. A computer-simulation study of hydrophobic hydration of rare gases and of methane. I. Thermodynamic and structural properties. J. Chem. Phys. 95, 3643-3648 (1991)

1408. Smith, D.E., Zhang, L. & Haymet, A.D.J. Entropy of association of methane in water: A new molecular dynamics computer simulation. J. Chem. Phys. 98, 6445-6454 (1992)

1409. Wallqvist, A. & Berne, B.J. Computer simulation of hydrophobic hydration forces on stacked plates at short range. J. Phys. Chem. 99, 2893-2899 (1995)

1410. Tsunekawa, N., Miyagawa, H., Kitamura, K. & Hiwatari, Y. A study of water-water interactions in hydrophobic association by a molecular dynamics simulation with an optimized umbrella sampling method. J. Chem. Phys. 116, 6725-6730 (2002)

1411. Fleischman, S.H. & Brooks III, C.L. Thermodynamics of aqueous solvation: Solution properties of alcohols and alkanes. J. Chem. Phys. 87, 3029-3037 (1987)

1412. Reif, M.M. & Hünenberger, P.H. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities and expansivities of solvated ions. J. Chem. Phys. 134, 144103/1-144103/30 (2011)

1413. Hermans, J. & Shankar, S. The free energy of xenon binding to myoglobin from molecular dynamics simulation. Isr. J. Chem. 27, 225-227 (1986)

1414. Roux, B., Nina, M., Pomès, R. & Smith, J.C. Thermodynamic stability of water molecules in the Bacteriorhodopsin proton channel: A molecular dynamics free energy perturbation study. Biophys. J. 71, 670-681 (1996)

1415. Gilson, M.K., Given, J.A., Bush, B.L. & McCammon, J.A. The statistical thermodynamic basis for computation of binding. Biophys. J. 72, 1047-1069 (1997)

1416. Hermans, J. & Wang, L. Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4 Lysozyme. J. Am. Chem. Soc. 119, 2707-2714 (1997)

1417. Boresch, S., Tettinger, F. & Leitgeb, M. Absolute binding free energies: A quantitative approach for their calculation. J. Phys. Chem. B 107, 9535-9551 (2003)

1418. Swanson, J.M.J., Henchman, R.H. & McCammon, J.A. Revisiting free energy calculations: A theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys. J. 86, 67-74 (2004)

1419. Deng, Y. & Roux, B. Calculation of standard binding free energies: Aromatic molecules in the T4 lysozyme L99A Mutant. J. Chem. Theory Comput. 2, 1255-1273 (2006)

1420. Simonson, T. Free energy of particle insertion. An exact analysis of the origin singularity for simple liquids. Mol. Phys. 80, 441-447 (1993)

1421. Pillardy, J. & Piela, L. Molecular dynamics on deformed potential energy hypersurfaces. J. Phys. Chem. 99, 11805-11812 (1995)

1422. Garde, S., Hummer, G. & Paulaitis, M.E. Free energy of hydration of a molecular ionic solute: Tetramethylammonium ion. J. Chem. Phys. 108, 1552-1561 (1998)

1423. Sakane, S., Ashbaugh, H.S. & Wood, R.H. Continuum corrections to the polarization and thermodynamic properties of Ewald sum simulations for ions and ion pairs at infinite dilution. J. Phys. Chem. B 102, 5673-5682 (1998)

1424. Herce, D.H., Darden, T. & Sagui, C. Calculation of ionic charging free energies in simulation systems with atomic charges, dipoles, and quadrupoles. J. Chem. Phys. 119, 7621-7632 (2003)

1425. Almlöf, M., Carlsson, J. & Åqvist, J. Improving the accuracy of the linear interaction energy method for solvation free energies. J. Chem. Theory Comput. 3, 2162-2175 (2007)

1426. Oostenbrink, C. Efficient free energy calculations on small molecule host-guest systems. A combined linear interaction energy/one-step perturbation approach. J. Comput. Chem. 30, 212-221 (2008)

1427. Warshel, A. Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions. J. Phys. Chem. 86, 2218-2224 (1982)

1428. Warshel, A., Sussman, F. & King, G. Free energy of charges in solvated proteins: Microscopic calculations using a reversible charging process. Biochemistry 25, 8368-8372 (1986)

1429. Hummer, G., Pratt, L.R., Garcia, A.E., Berne, B.J. & Rick, S.W. Electrostatic potentials and free energies of solvation of polar and charged molecules. J. Phys. Chem. B 101, 3017-3020 (1997)

1430. Hummer, G., Pratt, L.R. & Garcia, A.E. Ion sizes and finite-size corrections for ionic-solvation free energies. J. Chem. Phys. 107, 9275-9277 (1997)

1431. Figueirido, F., del Buono, G.S. & Levy, R.M. On finite-size corrections to the free energy of ionic hydration. J. Phys. Chem. B 101, 5622-5623 (1997)

1432. Åqvist, J. & Hansson, T. Analysis of electrostatic potential truncation schemes in simulations of polar solvents. J. Phys. Chem. B 102, 3837-3840 (1998)

1433. Ashbaugh, H.S. & Wood, R.H. Reply to comment on “Electrostatic potentials and free energies of solvation of polar and charged molecules”. J. Phys. Chem. B 102, 3844-3845 (1998)

1434. Vorobjev, Y.N. & Hermans, J. A critical analysis of methods of calculation of a potential in simulated polar liquids : Strong arguments in favor of “Molecule-based” summation and of vacuum boundary conditions in Ewald summations. J. Phys. Chem. B 103, 10234-10242 (1999)

1435. Yang, P.-K. & Lim, C. Nonconvergence of the solute potential in an infinite solvent and its implications in continuum models. J. Phys. Chem. B 106, 12093-12096 (2002)

1436. Babu, C.S., Yang, P.-K. & Lim, C. On the charge and molecule based summations of solvent electrostatic potentials and the validity of electrostatic linear response in water. J. Biol. Phys. 28, 95-113 (2002)

1437. Hummer, G., Pratt, L.R. & Garcia, A.E. Molecular theories and simulation of ions and polar molecules in water. J. Phys. Chem. A 102, 7885-7895 (1998)

1438. Hummer, G., Pratt, L.R., Garcia, A.E., Garde, S., Berne, B.J. & Rick, S.W. Reply to comments on “Electrostatic potentials and free energies of solvation of polar and charged molecules”. J. Phys. Chem. B 102, 3841-3843 (1998)

1439. Warren, G.L. & Patel, S. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: An assessment of simulation methodology and force field performance and transferability. J. Chem. Phys. 127, 064509/1-064509/19 (2007)

1440. Christou, N.I., Whitehouse, J.S., Nicholson, D. & Parsonage, N.G. Studies of high density water films by computer simulation. Mol. Phys. 55, 397-410 (1985)

1441. Aloisi, G., Guidelli, R., Jackson, R.A., Clark, S.M. & Barnes, P. The structure of water at a neutral interface. J. Electroanal. Chem 206, 131-137 (1986)

1442. Wilson, M.A., Pohorille, A. & Pratt, L.R. Molecular dynamics of the water liquid-vapor interface. J. Phys. Chem. 91, 4873-4878 (1987)

1443. Wilson, M.A., Pohorille, A. & Pratt, L.R. Surface potential of the water liquid-vapor interface. J. Chem. Phys. 88, 3281-3285 (1988)

1444. Matsumoto, M. & Kataoka, Y. Study on liquid-vapor interface of water. I. Simulation results of thermodynamic properties and orientational structure. J. Chem. Phys. 88, 3233-3245 (1988)

1445. Wilson, M.A., Pohorille, A. & Pratt, L.R. Comment on “Study on the liquid-vapor interface of water. I. Simulation results of thermodynamic properties and orientational structure”. J. Chem. Phys. 90, 5211-5213 (1989)

1446. Sokhan, V.P. & Tildesley, D.J. The free surface of water: molecular orientation, surface potential and nonlinear susceptibility. Mol. Phys. 92, 625-640 (1997)

1447. Jaqaman, K., Tuncay, K. & Ortoleva, P.J. Classical density functional theory of orientational order at interfaces: Application to water. J. Chem. Phys. 120, 926-938 (2004)

1448. Kathmann, S.M., I-Feng, W.K. & Mundy, C.J. Electronic effects on the surface potential at the vapor-liquid interface of water. J. Am. Chem. Soc. 130, 16556-16561 (2008)

1449. Kathmann, S.M., I-Feng, W.K. & Mundy, C.J. Erratum to “Electronic effects on the surface potential at the vapor-liquid interface of water” [J. Am. Chem. Soc. 130, 16556-16561 (2009)]. J. Am. Chem. Soc. 131, 17522-17522 (2009)

1450. Leung, K. Surface potential at the air-water interface computed using density functional theory. J. Phys. Chem. Lett. 1, 496-499 (2010)

1451. Brodskaya, E.N., The molecular dynamics simulation of water clusters. Mol. Phys. 62, 251-265 (1987)

1452. Kalcher, I., Horinek, D., Netz, R.R. & Dzubiella, J. Ion-specific correlations in bulk and at biointerfaces. J. Phys.: Condens. Matter 21, 424108/1-424108/10 (2009)

1453. Gauss, C.F. Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum. Methodo novo tractata. Commentationes societatis regiae scientiarum Gottingensis recentiores II 5, 1-24 (1813)

1454. Stillinger Jr., F.H. & Ben-Naim, A. Liquid-vapor interface potential for water. J. Chem. Phys. 47, 4431-4437 (1967)

1455. Pohorille, A. & Wilson, M.A. Viewpoint 9 - Molecular structure of aqueous interfaces. J. Mol. Struct. (Theochem) 284, 271-298 (1993)

1456. Ashbaugh, H.S. Influence of potential truncation on anisotropic systems. Mol. Phys. 97, 433-437 (1999)

1457. Fletcher, N.H. Surface structure of water and ice. II. A revised model. Philos. Mag. 18, 1287-1300 (1968)

1458. Beglov, D. & Roux, B. Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J. Chem. Phys. 100, 9050-9063 (1994)

1459. Åqvist, J. Comment on “Transferability of ion models” [J. Phys. Chem. 97, 6524-6529 (1993)]. J. Phys. Chem. 98, 8253-8255 (1994)

1460. Brodskaya, E.N., Molecular dynamics computation of the work of ion solvation: comparison of two models for water. Mol. Phys. 101, 1495-1500 (2003)

1461. Lukyanov, S.I., Zidi, Z.S. & Shevkunov, S.V. Monte Carlo bicanonical ensemble simulation for sodium cation hydration free energy in liquid water. Fluid Phase Equilibria 233, 34-46 (2005)

1462. Marrone, T.J. & Merz Jr., K.M. Transferability of ion models. J. Phys. Chem. 97, 6524-6529 (1993)

1463. Chipot, C., Millot, C., Maigret, B. & Kollman, P.A. Molecular dynamics free energy perturbation calculations: Influence of nonbonded parameters on the free energy of charged and neutral species. J. Phys. Chem. 98, 11362-11372 (1994)

1464. Pliego, J.R. & Riveros, J.M. On the calculation of the absolute solvation free energy of ionic species: Application of the extrapolation method to the hydroxide ion in aqueous solution. J. Phys. Chem. B 104, 5155-5160 (2000)

1465. Patra, M. & Karttunen, M. Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: Diffusion, free energy of hydration, and structural properties. J. Comp. Chem. 25, 678-689 (2004)

1466. de Araujo, A.S., Sonoda, M.T., Piro, O.E. & Castellano, E.E. Development of new Cd2+ and Pb2+ Lennard-Jones parameters for liquid simulations. J. Phys. Chem. B 111, 2219-2224 (2007)

1467. Whitfield, T.W., Varma, S., Harder, E., Lamoureux, G., Rempe, S.B. & Roux, B. Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models. J. Chem. Theory Comput. 3, 2068-2082 (2007)

1468. Wood, R.H. Continuum electrostatics in a computational universe with finite cutoff radii and periodic boundary conditions: Correction to computed free energies of ionic solvation. J. Chem. Phys. 103, 6177-6187 (1995)

1469. Gabdoulline, R.R., Zheng, C. & Vanderkooi, G. The mean electrostatic potential difference between liquid water and vacuum by MD simulation. J. Mol. Liq. 71, 1-10 (1997)

1470. Lukyanov, S.I., Zidi, Z.S. & Shevkunov, S.V. Ion-water cluster free energy computer simulation using some of most popular ion-water and water-water pair interaction potentials. Chem. Phys. 332, 188-202 (2007)

1471. Lyubartsev, A.P., Forrisdahl, O.K. & Laaksonen, A. Solvation free energies of methane and alkali halide ion pairs: An expanded ensemble molecular dynamics simulation study. J. Chem. Phys. 108, 227-233 (1998)

1472. Lukyanov, S.I., Zidi, Z.S. & Shevkunov, S.V. Study of Aqvist's interaction model in Na+-water clusters: free energy and structure. J. Mol. Struct. (Theochem) 623, 221-236 (2003)

1473. Kuzmin, V.L., Calculation of the surface potential for charge models of water. Colloid J. 6, 776-780 (1995)

1474. Stern, H.A. & Berne, B.J. Quantum effects in liquid water: Path-integral simulations of a flexible and polarizable ab initio model. J. Chem. Phys. 115, 7622-7628 (2001)

1475. Egelstaff, P.A. Structural quantum effects in hydrogeneous liquids and glasses: Part I. Review of early methods and experiments. Phys. Chem. Liq. 40, 203-219 (2002)

1476. Truhlar, D.G., Gao, J.L., Alhambra, C., Garcia-Viloca, M., Corchado, J., Sanchez, M.L. & Villa, J. The incorporation of quantum effects in enzyme kinetics modeling. Acc. Chem. Res. 35, 341-349 (2002)

1477. Schofield, J. Quantum effects in ab initio calculations of rate constants for chemical reactions occurring in the condensed phase. Theor. Chem. Acc. 116, 18-30 (2006)

1478. Tongraar, A. & Rode, B.M. The role of second shell quantum effects on the preferential solvation of Li+ in aqueous ammonia: An extended ab initio QM/MM MD simulation with enlarged QM region. Chem. Phys. Lett. 466, 61-64 (2008)

1479. Geerke, D.P., Luber, S., Marti, K.H. & van Gunsteren, W.F. On the direct calculation of the free energy of quantization for molecular systems in the condensed phase. J. Comp. Chem. 30, 514-523 (2008)

1480. Scheiner, S. Calculation of isotope effects from first principles. Biochem. Biophys. Acta - Bioenergetics 1458, 28-42 (2000)

1481. Marti, S., Moliner, V., Tunon, M. & Williams, I.H. Computing kinetic isotope effects for chorismate mutase with high accuracy. A new DFT/MM strategy. J. Phys. Chem. B 109, 3707-3710 (2005)

1482. Hakem, I.F., Boussaid, A., Benchouk-Taleb, H. & Bockstaller, M.R. Temperature, pressure, and isotope effects on the structure and properties of liquid water: A lattice approach. J. Chem. Phys. 127, 224106/1-224106/10 (2007)

1483. Pabis, A., Paluch, P., Szala, J. & Paneth, P. A DFT study of the kinetic isotope effects on the competing S(N)2 and E2 reactions between hypochlorite anion and ethyl chloride. J. Chem. Theory Comput. 5, 33-36 (2009)

1484. Zhan, C.-G. & Dixon, D.A. Absolute hydration free energy of the proton from first-principles electronic structure calculations. J. Phys. Chem. A 105, 11534-11540 (2001)

1485. Gray, H.B. & Winkler, J.R. Electron tunneling through proteins. Quart. Rev. Biophys. 36, 341-372 (2003)

1486. Liang, Z.X. & Klinman, J.P. Structural bases of hydrogen tunneling in enzymes: Progress and puzzles. Curr. Opin. Struct. Biol. 14, 648-655 (2004)

1487. Hammes-Schiffer, S. Hydrogen tunneling and protein motion in enzyme reactions. Acc. Chem. Res. 39, 93-100 (2006)

1488. Mavri, J., Liu, H.B., Olsson, M.H.M. & Warshel, A. Simulation of tunneling in enzyme catalysis by combining a biased propagation approach and the quantum classical path method: Application to lipoxygenase. J. Phys. Chem. B 112, 5950-5954 (2008)

1489. Jortner, J. & Rosenblit, M. Ultracold large finite systems. Adv. Chem. Phys. 132, 247-343 (2006)

1490. Barranco, M., Guardiola, R., Hernández, S., Mayol, R., Navarro, J. & Pi, M. Helium nanodroplets: an overview. J. Low Temp. Phys. 142, 1-81 (2006)

1491. Balibar, S. Supersolidity and superfluidity. Contemp. Phys. 48, 31-39 (2007)

1492. Prokof'ev, N. What makes a crystal supersolid? Adv. Phys. 56, 381-402 (2007)

1493. Giorgini, S., Pitaevskii, L.P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215-1274 (2008)

1494. Carr, L.D., DeMille, D., Krems, R. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049/1-055049/87 (2009)

1495. Balibar, S. The enigma of supersolidity. Nature 464, 176-182 (2010)

1496. Huang, K. Statistical mechanics. Edition 2. Wiley, New York, USA (1987)

1497. Wormer, P.E.S. & van der Avoird, A. Intermolecular potentials, internal motions, and spectra of van der Waals and hydrogen-bonded complexes. Chem. Rev. 100, 4109-4143 (2000)

1498. Muller-Dethlefs, K. & Hobza, P. Noncovalent interactions: A challenge for experiment and theory. Chem. Rev. 100, 143-167 (2000)

1499. Keutsch, F.N., Cruzan, J.D. & Saykally, R.J. The water trimer. Chem. Rev. 103, 2533-2577 (2003)

1500. le Fèvre, R.J.W. Polarization and polarizability in chemistry. Rev. Pure Appl. Chem. 20, 67-79 (1970)

1501. Berendsen, H.J.C. & van Gunsteren, W.F. Practical algorithms for dynamic simulations. In: Molecular-dynamics simulation of statistical-mechanical systems, proceedings of the international school of physics “Enrico Fermi”, course 97. Ciccotti, G. & Hoover, W.G., Eds. North-Holland, Amsterdam, The Netherlands., pp 43-65 (1986)

1502. Nazmutdinov, R.R. Quantum-chemical description of charge transfer processes at the Metal/Solution interface: Yesterday, today, and tomorrow. Russ. J. Electrochem. 38, 111-122 (2002)

1503. Cramer, T., Steinbrecher, T., Labahn, A. & Koslowski, T. Static and dynamic aspects of DNA charge transfer: A theoretical perspective. Phys. Chem. Chem. Phys. 7, 4039-4050 (2005)

1504. Vlcek, A. & Zalis, S. Modeling of charge-transfer transitions and excited states in d(6) transition metal complexes by DFT techniques. Coor. Chem. Rev. 251, 258-287 (2007)

1505. Guillaumont, D. & Daniel, C. A quantum chemical investigation of the metal-to-ligand charge transfer photochemistry. Coord. Chem. Rev. 177, 181-199 (1998)

1506. Ben-Nun, M., Quenneville, J. & Martinez, T.J. Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104, 5161-5175 (2000)

1507. Serrano-Andres, L. & Merchán, M. Photostability and photoreactivity in biomolecules: Quantum chemistry of nucleic acid base monomers and dimers. In: Radiation induced molecular phenomena in nucleic acids. Volume 5. Shukla, M. & Leszczynski, J., Eds. Springer, Netherlands, pp 435-472 (2008)

1508. Zamaraev, K.I. & Khairutdinov, R.F. Photoinduced electron-tunneling reactions in chemistry and biology. Topics Curr. Chem. 163, 1-94 (1992)

1509. Marian, C.M. & Gilka, N. Performance of the density functional theory/multireference configuration interaction method on electronic excitation of extended pi-systems. J. Chem. Theory Comput. 4, 1501-1515 (2008)

1510. Fabian, J. Electronic excitation of sulfur-organic compounds. Performance of time-dependent density functional theory. Theor. Chem. Acc. 106, 199-217 (2001)

1511. Siegman, A.E. Lasers. Edition 1. University Science Books, Sausalito, California, USA (1986)

1512. Han, J.D., Kaledin, L.A., Goncharov, V., Komissarov, A.V. & Heaven, M.C. Accurate ionization potentials for UO and UO2: A rigorous test of relativistic quantum chemistry calculations. J. Am. Chem. Soc. 125, 7176-7177 (2003)

1513. Roca-Sanjuan, D., Rubio, M., Merchan, M. & Serrano-Andres, L. Ab initio determination of the ionization potentials of DNA and RNA nucleobases. J. Chem. Phys. 125, 084302/1-084302/7 (2006)

1514. Lau, K.C. & Ng, C.Y. Accurate ab initio predictions of ionization energies and heats of formation for the 2-propyl, phenyl, and benzyl radicals. J. Chem. Phys. 124, 044323/1-044323/9 (2006)

1515. Kollman, P.A., Kuhn, B., Donini, O., Perakyla, M., Stanton, R. & Bakowies, D. Elucidating the nature of enzyme catalysis utilizing a new twist on an old methodology: Quantum mechanical free energy calculations on chemical reactions in enzymes and in aqueous solution. Acc. Chem. Res. 34, 72-79 (2001)

1516. van Speybroeck, V. & Meier, R.J. A recent development in computational chemistry: Chemical reactions from first principles molecular dynamics simulations. Chem. Soc. Rev. 32, 151-157 (2003)

1517. Cukier, R.I. Theory and simulation of proton-coupled electron transfer, hydrogen-atom transfer, and proton translocation in proteins. Biochem. Biophys. Acta - Bioenergetics 1655, 37-44 (2004)

1518. Noodleman, L., Lovell, T., Han, W.G., Li, J. & Himo, F. Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. Chem. Rev. 104, 459-508 (2004)

1519. Amara, P., Volbeda, A., Fontecilla-Camps, J.C. & Field, M.J. A quantum chemical study of the reaction mechanism of acetyl-coenzyme a synthase. J. Am. Chem. Soc. 127, 2776-2784 (2005)

1520. Rod, T.H. & Ryde, U. Quantum mechanical free energy barrier for an enzymatic reaction. Phys. Rev. Lett. 94, 138302/1-138302/4 (2005)

1521. Blomberg, M.R.A. & Siegbahn, P.E.M. Different types of biological proton transfer reactions studied by quantum chemical methods. Biochem. Biophys. Acta - Bioenergetics 1757, 969-980 (2006)

1522. Eckert-Maksic, M., Vazdar, M., Barbatti, M., Lischka, H. & Maksic, Z.B. Automerization reaction of cyclobutadiene and its barrier height: An ab initio benchmark multireference average-quadratic coupled cluster study. J. Chem. Phys. 125, 064310/1-064310/9 (2006)

1523. Major, D.T. & Gao, J.L. A combined quantum mechanical and molecular mechanical study of the reaction mechanism and alpha-amino acidity in alanine racemase. J. Am. Chem. Soc. 128, 16345-16357 (2006)

1524. Bing, D., Zhao, Y.F., Hao, F.Y., Li, X.Y., Liu, F.L., Zhang, G.H. & Zhang, P.X. Ab initio study on the reaction mechanism of ozone with bromine atom. Int. J. Quant. Chem. 107, 1085-1091 (2007)

1525. Crim, F.F. Chemical reaction dynamics. Proc. Natl. Acad. Sci. USA 105, 12647-12648 (2008)

1526. Namazian, M. & Heidary, H. Ab initio calculations of pKa values of some organic acids in aqueous solution. J. Mol. Struct. (Theochem) 620, 257-263 (2003)

1527. Mrazek, J. & Burda, J.V. Can the pH value of water solutions be estimated by quantum chemical calculations of small water clusters? J. Chem. Phys. 125, 194518/1-194518/14 (2006)

1528. da Silva, G., Kennedy, E.M. & Dlugogorski, B.Z. Ab initio procedure for aqueous-phase pKa calculation: The acidity of nitrous acid. J. Phys. Chem. A 110, 11371-11376 (2006)

1529. Bucher, D., Guidoni, L. & Röthlisberger, U. The protonation state of the Glu-71/Asp-80 residues in the KcsA potassium channel: A first-principles QM/MM molecular dynamics study. Biophys. J. 93, 2315-2324 (2007)

1530. Dolg, M. Effective core potentials. In: Modern methods and algorithms of quantum chemistry. Volume 3. Grotendorst, J., Ed. John von Neumann Institute for Computing, Jülich, Germany; NIC Series, pp 507-540 (2000)

1531. Reiher, M. & Hess, B. Relativistic electronic-structure calculations for atoms and molecules. In: Modern methods and algorithms of quantum chemistry. Volume 3. Grotendorst, J., Ed. John von Neumann Institute for Computing, Jülich, Germany; NIC Series, pp 479-505 (2000)

1532. Reiher, M. & Wolf, A. Relativistic quantum chemistry. Wiley-VCH, Weinheim, Germany (2009)

1533. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471-2474 (1985)

1534. Feynmann, R.P. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367-387 (1948)

1535. Feynman, R.P. & Hibbs, A.R. Quantum mechanics and path integrals. McGraw-Hill Companies, New York, USA (1965)

1536. Szabo, A. & Ostlund, N.S. Modern quantum chemistry: Introduction to advanced electronic structure theory. Dover, New York, USA (1996)

1537. Knowles, P., Schütz, M. & Werner, H.-J. Ab initio methods for electron correlation in molecules. In: Modern methods and algorithms of quantum chemistry. Volume 3. Grotendorst, J., Ed. John von Neumann Institute for Computing, Jülich, Germany; NIC Series, pp 97-179 (2000)

1538. Carsky, P. Recent progress in coupled cluster methods: Theory and applications. Edition 1. Springer-Verlag GmbH, Berlin, Germany (2010)

1539. Pople, J.A. & Segal, G.A. Approximate self-consistent molecular orbital theory. 3. CNDO results for AB2 and AB3 systems. J. Chem. Phys. 44, 3289-3296 (1966)

1540. Pople, J.A., Beveridge, D.L. & Dobosh, P.A. Approximate self-consistent molecular-orbital theory. 5. Intermediate neglect of differential overlap. J. Chem. Phys. 47, 2026-2033 (1967)

1541. Delbene, J. & Jaffe, H.H. Use of CNDO method in spectroscopy. I. Benzene pyridine and diazines. J. Chem. Phys. 48, 1807-1813 (1968)

1542. Ridley, J. & Zerner, M. Intermediate neglect of differential overlap technique for spectroscopy - pyrrole and azines. Theor. Chim. Acta 32, 111-134 (1973)

1543. Bingham, R.C., Dewar, M.J.S. & Lo, D.H. Ground-states of molecules. 25. MINDO-3 - improved version of MINDO semiempirical SCF-MO method. J. Am. Chem. Soc. 97, 1285-1293 (1975)

1544. Dewar, M.J.S. & Thiel, W. Ground-states of molecules. 38. MNDO method - approximations and parameters. J. Am. Chem. Soc. 99, 4899-4907 (1977)

1545. Dewar, M.J.S. & Thiel, W. Ground-states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J. Am. Chem. Soc. 99, 4907-4917 (1977)

1546. Bacon, A.D. & Zerner, M.C. Intermediate neglect of differential overlap theory for transition-metal complexes - Fe, Co and Cu chlorides. Theor. Chim. Acta 53, 21-54 (1979)

1547. Nanda, D.N. & Jug, K. SINDO1 - a semi-empirical SCF-MO method for molecular-binding energy and geometry. 1. Approximations and parametrization. Theor. Chim. Acta 57, 95-106 (1980)

1548. Thiel, W. The MNDOC method, a correlated version of the MNDO model. J. Am. Chem. Soc. 103, 1413-1420 (1981)

1549. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. & Stewart, J.J.P. The development and use of quantum-mechanical molecular-models. 76. AM1 - a new general-purpose quantum-mechanical molecular-model. J. Am. Chem. Soc. 107, 3902-3909 (1985)

1550. Jug, K., Iffert, R. & Schulz, J. Development and parametrization of SINDO1 for 2nd-row elements. Int. J. Quant. Chem. 32, 265-277 (1987)

1551. Stewart, J.J.P. Optimization of parameters for semiempirical methods. 1. Method. J. Comp. Chem. 10, 209-220 (1989)

1552. Stewart, J.J.P. Optimization of parameters for semiempirical methods. 2. Applications. J. Comp. Chem. 10, 221-264 (1989)

1553. Thiel, W. & Voityuk, A.A. Extension of the MNDO formalism to d-orbitals - integral approximations and preliminary numerical results. Theor. Chim. Acta 81, 391-404 (1992)

1554. Dewar, M.J.S., Jie, C.X. & Yu, J.G. SAM1 - the 1st of a new series of general-purpose quantum-mechanical molecular-models. Tetrahedron 49, 5003-5038 (1993)

1555. Holder, A.J., Dennington II, R.D. & Jie, C. Addendum to SAM1 results previously published. Tetrahedron 50, 627-638 (1994)

1556. Thiel, W. & Voityuk, A.A. Extension of the MDNO formalism to d orbitals: Integral approximations and preliminary numerical results. Theor. Chim. Acta 93, 315-315 (1996)

1557. Thiel, W. & Voityuk, A.A. Extension of MNDO to d orbitals: Parameters and results for the second-row elements and for the zinc group. J. Phys. Chem. 100, 616-626 (1996)

1558. Ahlswede, B. & Jug, K. Consistent modifications of SINDO1: I. Approximations and parameters. J. Comp. Chem. 20, 563-571 (1999)

1559. Ahlswede, B. & Jug, K. Consistent modifications of SINDO1: II. Applications to first- and second-row elements. J. Comp. Chem. 20, 572-578 (1999)

1560. Voityuk, A.A., Zerner, M.C. & Rösch, N. Extension of the neglect of diatomic differential overlap method to spectroscopy. NDDO-G parametrization and results for organic molecules. J. Phys. Chem. A 103, 4553-4559 (1999)

1561. Thiel, W. Semiempirical methods. In: Modern methods and algorithms of quantum chemistry. Volume 3. Grotendorst, J., Ed. John von Neumann Institute for Computing, Jülich, Germany; NIC Series, pp 261-283 (2000)

1562. Sherrill, C.D. & Schaefer, H.F. III. The configuration interaction method: Advances in highly correlated approaches. Adv. Quantum Chem. 34, 143-269 (1999)

1563. Bakowies, D. Accurate extrapolation of electron correlation energies from small basis sets. J. Chem. Phys. 127, 164109/1-164109/12 (2007)

1564. Bakowies, D. Extrapolation of electron correlation energies to finite and complete basis set targets. J. Chem. Phys. 127, 084105/1-084105/23 (2007)

1565. Hartree, D.R. The wave mechanics of an atom with a non-Coulomb central field. Part III. Term values and intensities in series in optical spectra. Proc. Cambridge Philos. Soc. 24, 426-437 (1928)

1566. Hartree, D.R. The wave mechanics of an atom with a non-Coulomb central field. Part II. Some results and discussion. Proc. Cambridge Philos. Soc. 24, 111-132 (1928)

1567. Hartree, D.R. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Proc. Cambridge Philos. Soc. 24, 89-110 (1928)

1568. Fock, V. Näherungsmethoden zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 61, 126-148 (1930)

1569. Kohn, W. & Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133-A1138 (1965)

1570. Parr, R.G. & Weitao, Y. Density-functional theory of atoms and molecules. Oxford Univ. Press, New York, USA (1989)

1571. Leung, K., Rempe, S.B. & von Lilienfeld, O.A. Ab initio molecular dynamics calculations of ion hydration free energies. J. Chem. Phys. 130, 204507/1-204507/11 (2009)

1572. Rempe, S.B. & Leung, K. Response to “Comment on 'Ab initio molecular dynamics calculations of ion hydration free energies' ” [J. Chem. Phys. 133, 047103 (2010)]. J. Chem. Phys. 133, 047104/1-047104/2 (2010)

1573. Seidel, R., Faubel, M., Winter, B. & Blumberger, J. Single-ion reorganization free energy of aqueous Ru(bpy)32+/3+ and Ru(H2O)62+/3+ from photoemission spectroscopy and density functional molecular dynamics simulation. J. Am. Chem. Soc. 131, 16127-16137 (2009)

1574. Sulpizi, M. & Sprik, M. Acidity constants from vertical energy gaps: density functional theory based molecular dynamics implementation. Phys. Chem. Chem. Phys. 10, 5238-5249 (2008)

1575. Tuckerman, M.E., Laasonen, K., Sprik, M. & Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103, 150-161 (1995)

1576. Tuckerman, M., Laasonen, K., Sprik, M. & Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH- ions in water. J. Phys. Chem. 99, 5749-5752 (1995)

1577. Marx, D., Sprik, M. & Parrinello, M. Ab initio molecular dynamics of ion solvation. The case of Be2+ in water. Chem. Phys. Lett. 273, 360-366 (1997)

1578. Ramaniah, L.M., Bernasconi, M. & Parrinello, M. Ab initio molecular-dynamics simulation of K+ solvation in water. J. Chem. Phys. 111, 1587-1591 (1999)

1579. Lubin, M.I., Bylaska, E.J. & Weare, J.H. Ab initio molecular dynamics simulations of aluminum ion solvation in water clusters. Chem. Phys. Lett. 322, 447-453 (2000)

1580. Lyubartsev, A.P., Laasonen, K. & Laaksonen, A. Hydration of Li+ ion. An ab initio molecular dynamics simulation. J. Chem. Phys. 114, 3120-3126 (2001)

1581. Tobias, D.J., Jungwirth, P. & Parrinello, M. Surface solvation of halogen anions in water clusters: An ab initio molecular dynamics study of the Cl-(H2O)6 complex. J. Chem. Phys. 114, 7036-7044 (2001)

1582. Lightstone, F.C., Schwegler, E., Hood, R.Q., Gygi, F. & Galli, G. A first principles molecular dynamics simulation of the hydrated magnesium ion. Chem. Phys. Lett. 343, 549-555 (2001)

1583. Raugei, S. & Klein, M.L. Dynamics of water molecules in the Br- solvation shell: An ab initio molecular dynamics study. J. Am. Chem. Soc. 123, 9484-9485 (2001)

1584. Raugei, S. & Klein, M.L. An ab initio study of water molecules in the bromide ion solvation shell. J. Chem. Phys. 116, 196-202 (2002)

1585. Bakó, I., Hutter, J. & Pálinkás, G. Car-Parrinello molecular dynamics simulation of the hydrated calcium ion. J. Chem. Phys. 117, 9838-9843 (2002)

1586. Chen, B., Ivanov, I., Park, J.M., Parrinello, M. & Klein, M.L. Solvation structure and mobility mechanism of OH-: A Car-Parrinello molecular dynamics investigation of alkaline solutions. J. Phys. Chem. B 106, 12006-12016 (2002)

1587. Heuft, J.M. & Meijer, E.J. Density functional theory based molecular-dynamics study of aqueous chloride solvation. J. Chem. Phys. 119, 11788-11791 (2003)

1588. Ikeda, T., Hirata, M. & Kimura, T. Ab initio molecular dynamics study of polarization effects on ionic hydration in aqueous AlCl3 solution. J. Chem. Phys. 119, 12386-12392 (2003)

1589. Leung, K. & Rempe, S.B. Ab initio molecular dynamics study of formate ion hydration. J. Am. Chem. Soc. 126, 344-351 (2004)

1590. Heuft, J.M. & Meijer, E.J. Density functional theory based molecular-dynamics study of aqueous fluoride solvation. J. Chem. Phys. 122, 094501/1-094501/7 (2005)

1591. Heuft, J.M. & Meijer, E.J. Density functional theory based molecular-dynamics study of aqueous iodide solvation. J. Chem. Phys. 123, 094506/1-094506/7 (2005)

1592. Ikeda, T., Hirata, M. & Kimura, T. Hydration of Y3+ ion: A Car-Parrinello molecular dynamics study. J. Chem. Phys. 122, 024510/1-024510/5 (2005)

1593. Izvekov, S. & Voth, G.A. Ab initio molecular-dynamics simulation of aqueous proton solvation and transport revisited. J. Chem. Phys. 123, 044505/1-044501/9 (2005)

1594. Izvekov, S. & Voth, G.A. Erratum to “Ab initio molecular-dynamics simulation of aqueous proton solvation and transport revisited” [J. Chem. Phys. 123 044505/1-044501/9 (2005)]. J. Chem. Phys. 124, 039901/1-039901/1 (2006)

1595. Amira, S., Spångberg, D. & Hermansson, K. OD vibrations and hydration structure in an Al3+(aq) solution from a Car-Parrinello molecular-dynamics simulation. J. Chem. Phys. 124, 104501/1-104501/13 (2006)

1596. Ikeda, T., Boero, M. & Terakura, K. Hydration of alkali ions from first principles molecular dynamics revisited. J. Chem. Phys. 126, 034501/1-034501/9 (2007)

1597. Ikeda, T., Boero, M. & Terakura, K. Hydration properties of magnesium and calcium ions from constrained first principles molecular dynamics. J. Chem. Phys. 127, 074503/1-074503/8 (2007)

1598. Sit, P.H.-L., Cococcioni, M. & Marzari, N. Car-Parrinello molecular dynamics in the DFT + U formalism: Structure and energetics of solvated ferrous and ferric ions. J. Electroanal. Chem. 607, 107-112 (2007)

1599. Krekeler, C. & delle Site, L. Solvation of positive ions in water: the dominant role of water-water interaction. J. Phys.: Condens. Matter 19, 192101/1-192101/9 (2007)

1600. Petit, L., Vuilleumier, R., Maldivi, P. & Adamo, C. Ab initio molecular dynamics study of a highly concentrated LiCl aqueous solution. J. Chem. Theory Comput. 4, 1040-1048 (2008)

1601. Petit, L., Vuilleumier, R., Maldivi, P. & Adamo, C. Molecular dynamics study of the coordination sphere of trivalent lanthanum in a highly concentrated LiCl aqueous solution: A combined classical and ab initio approach. J. Phys. Chem. B 112, 10603-10607 (2008)

1602. Beret, E.C., Martínez, J.M., Pappalardo, R.R., Marcos, E.S., Doltsinis, N.L. & Marx, D. Explaining asymmetric solvation of Pt(II) versus Pd(II) in aqueous solution revealed by ab initio molecular dynamics simulations. J. Chem. Theory Comput. 4, 2108-2121 (2008)

1603. Beret, E.C., Pappalardo, R.R., Doltsinis, N.L., Marx, D. & Marcos, E.S. Aqueous PdII and PtII: Anionic hydration revealed by Car-Parrinello simulations. Chem. Phys. Chem. 9, 237-240 (2008)

1604. Bucher, D. & Kuyucak, S. Polarization of water in the first hydration shell of K+ and Ca2+ ions. J. Phys. Chem. B 112, 10786-10790 (2008)

1605. Costanzo, F. & Della Valle, R.G. Car-Parrinello MD simulations for the Na+-phenylalanine complex in aqueous solution. J. Phys. Chem. B 112, 12783-12789 (2008)

1606. di Tommaso, D. & de Leeuw, N.H. The onset of calcium carbonate nucleation: A density functional theory molecular dynamics and hybrid microsolvation/continuum study. J. Phys. Chem. B 112, 6965-6975 (2008)

1607. Krekeler, C. & delle Site, L. Lone pair versus bonding pair electrons: The mechanism of electronic polarization of water in the presence of positive ions. J. Chem. Phys. 128, 134515/1-134515/5 (2008)

1608. Todorova, T., Hünenberger, P.H. & Hutter, J. Car-Parrinello molecular dynamics simulations of CaCl2 aqueous solutions. J. Chem. Theory Comput. 4, 779-789 (2008)

1609. Rodríguez-Fortea, A., Nadal-Vilà, L. & Poblet, J.M. Hydration of hydrogentungstate anions at different pH conditions: A Car-Parrinello molecular dynamics study. Inorg. Chem. 47, 7745-7750 (2008)

1610. Kumar, P.P., Kalinichev, A.G. & Kirkpatrick, R.J. Hydrogen-bonding structure and dynamics of aqueous carbonate species from Car-Parrinello molecular dynamics simulations. J. Phys. Chem. B 113, 794-802 (2009)

1611. Beret, E.C., Galbis, E., Pappalardo, R.R. & Marcos, E.S. Opposite effects of successive hydration shells on the aqua ion structure of metal cations. Mol. Simul. 35, 1007-1014 (2009)

1612. Guàrdia, E. & Skarmoutsos, I. On ion and molecular polarization of halides in water J. Chem. Theory Comput. 5, 1449-1453 (2009)

1613. Webster, F.J., Schnitker, J., Friedrichs, M.S., Friesner, R.A. & Rossky, P.J. Solvation dynamics of the hydrated electron - a nonadiabatic quantum simulation. Phys. Rev. Lett. 66, 3172-3175 (1991)

1614. Gao, J.L. Absolute free-energy of solvation from Monte Carlo simulations using combined quantum and molecular mechanical potentials. J. Phys. Chem. 96, 537-540 (1992)

1615. Kerdcharoen, T., Liedl, K.R. & Rode, B.M. A QM/MM simulation method applied to the solution of Li+ in liquid ammonia. Chem. Phys. 211, 313-323 (1996)

1616. Bryce, R.A., Vincent, M.A., Malcolm, N.O.J., Hillier, I.H. & Burton, N.A. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent. J. Chem. Phys. 109, 3077-3085 (1998)

1617. Tongraar, A. & Rode, B.M. Preferential solvation of Li+ in 18.45% aqueous ammonia: A Born-Oppenheimer ab initio quantum mechanics/molecular mechanics md simulation. J. Phys. Chem. A 103, 8524-8527 (1999)

1618. Cummins, P.L. & Gready, J.E. Coupled semiempirical quantum mechanics and molecular mechanics (QM/MM) calculations on the aqueous solvation free energies of ionized molecules. J. Comput. Chem. 20, 1028-1038 (1999)

1619. Marini, G.W., Liedl, K.R. & Rode, B.M. Investigation of Cu2+ hydration and the Jahn-Teller effect in solution by QM/MM Monte Carlo simulations. J. Phys. Chem. A 103, 11387-11393 (1999)

1620. Tongraar, A. & Rode, B.M. The role of non-additive contributions on the hydration shell structure of Mg2+ studied by Born-Oppenheimer ab initio quantum mechanical/molecular mechanical molecular dynamics simulation. Chem. Phys. Lett. 346, 485-491 (2001)

1621. Tongraar, A. & Rode, B.M. A Born-Oppenheimer ab initio quantum mechanical/molecular mechanical molecular dynamics simulation on preferential solvation of Na+ in aqueous ammonia solution. J. Phys. Chem. A 105, 506-510 (2001)

1622. Schwenk, C.F., Loeffler, H.H. & Rode, B.M. Molecular dynamics simulations of Ca2+ in water: Comparison of a classical simulation including three-body corrections and Born-Oppenheimer ab initio and density functional theory quantum mechanical/molecular mechanics simulations. J. Chem. Phys. 115, 10808-10813 (2001)

1623. Inada, Y., Mohammed, A.M., Loeffler, H.H. & Rode, B.M. Hydration structure and water exchange reaction of nickel(II)ion: Classical and QM/MM simulations. J. Phys. Chem. A 106, 6783-6791 (2002)

1624. Tongraar, A., Sagarik, K. & Rode, B.M. Preferential solvation of Ca2+ in aqueous ammonia solution: Classical and combined ab initio quantum mechanical/molecular mechanical molecular dynamics simulations. Phys. Chem. Chem. Phys. 4, 628-634 (2002)

1625. Inada, Y., Loeffler, H.H. & Rode, B.M. Librational, vibrational, and exchange motions of water molecules in aqueous Ni(II) solution: Classical and QM/MM molecular dynamics simulations. Chem. Phys. Lett. 358, 449-458 (2002)

1626. Loeffler, H.H. & Rode, B.M. The hydration structure of the lithium ion. J. Chem. Phys. 117, 110-117 (2002)

1627. Loeffler, H.H., Mohammed, A.M., Inada, Y. & Funahashi, S. Lithium(I) ion hydration: a QM/MM-MD study. Chem. Phys. Lett. 379, 452-457 (2003)

1628. Kerdcharoen, T. & Morokuma, K. Combined quantum mechanics and molecular mechanics simulation of Ca2+/ammonia solution based on the ONIOM-XS method: Octahedral coordination and implication to biology. J. Chem. Phys. 118, 8856-8862 (2003)

1629. Kritayakornupong, C., Plankensteiner, K. & Rode, B.M. Structure and dynamics of the Cd2+ ion in aqueous solution: Ab initio QM/MM molecular dynamics simulation. J. Phys. Chem. A 107, 10330-10334 (2003)

1630. Kritayakornupong, C., Plankensteiner, K. & Rode, B.M. Structural and dynamical properties of Co(III) in aqueous solution: Ab initio quantum mechanical/molecular mechanical molecular dynamics simulation. J. Chem. Phys. 119, 6068-6072 (2003)

1631. Kritayakornupong, C., Plankensteiner, K. & Rode, B.M. Dynamics in the hydration shell of Hg2+ ion: Classical and ab initio QM/MM molecular dynamics simulations. Chem. Phys. Lett. 371, 438-444 (2003)

1632. Remsungnen, T. & Rode, B.M. Dynamical properties of the water molecules in the hydration shells of Fe(II) and Fe(III) ions: ab initio QM/MM molecular dynamics simulations. Chem. Phys. Lett. 367, 586-592 (2003)

1633. Schwenk, C.F., Loeffler, H.H. & Rode, B.M. Structure and dynamics of metal ions in solution: QM/MM molecular dynamics simulations of Mn2+ and V2+. J. Am. Chem. Soc. 125, 1618-1624 (2003)

1634. Schwenk, C.F. & Rode, B.M. Extended ab initio quantum mechanical/molecular mechanical molecular dynamics simulations of hydrated Cu2+. J. Chem. Phys. 119, 9523-9531 (2003)

1635. Schwenk, C.F. & Rode, B.M. New insights into the Jahn-Teller effect through ab initio quantum-mechanical/molecular-mechanical molecular dynamics simulations of CuII in water. Chem. Phys. Chem. 4, 931-943 (2003)

1636. Tongraar, A. & Rode, B.M. The hydration structures of F- and Cl- investigated by ab initio QM/MM molecular dynamics simulations. Phys. Chem. Chem. Phys. 5, 357-362 (2003)

1637. Tongraar, A. & Rode, B.M. Dynamical properties of water molecules in the hydration shells of Na+ and K+: ab initio QM/MM molecular dynamics simulations. Chem. Phys. Lett. 385, 378-383 (2004)

1638. Tongraar, A. & Rode, B.M. Ab initio QM/MM molecular dynamics simulation of preferential K+ solvation in aqueous ammonia solution. Phys. Chem. Chem. Phys. 6, 411-416 (2004)

1639. Schwenk, C.F. & Rode, B.M. Ab initio QM/MM MD simulations of the hydrated Ca2+ ion. Pure Appl. Chem. 76, 37-47 (2004)

1640. Rode, B.M., Schwenk, C.F. & Tongraar, A. Structure and dynamics of hydrated ions - New insights through quantum mechanical simulations. J. Mol. Liq. 110, 105-122 (2004)

1641. Kritayakornupong, C., Plankensteiner, K. & Rode, B.M. The Jahn-Teller effect of the TiIII ion in aqueous solution: Extended ab initio QM/MM molecular dynamics simulations. Chem. Phys. Chem. 5, 1499-1506 (2004)

1642. Armunanto, R., Schwenk, C.F., Tran, H.T. & Rode, B.M. Structure and dynamics of Au+ ion in aqueous solution: Ab initio QM/MM md simulations. J. Am. Chem. Soc. 126, 2582-2587 (2004)

1643. Hermida-Ramón, J.M. & Karlström, G. Study of the hydronium ion in water. A combined quantum chemical and statistical mechanical treatment. J. Mol. Struct. (Theochem) 712, 167-173 (2004)

1644. Hofer, T.S. & Rode, B.M. The solvation structure of Pb(II) in dilute aqueous solution: An ab initio quantum mechanical/molecular mechanical molecular dynamics approach. J. Chem. Phys. 121, 6406-6411 (2004)

1645. Hofer, T.S., Pribil, A.B., Randolf, B.R. & Rode, B.M. Structure and dynamics of solvated Sn(II) in aqueous solution: An ab initio QM/MM MD approach. J. Am. Chem. Soc. 127, 14231-14238 (2005)

1646. Hofer, T.S., Rode, B.M. & Randolf, B.R. Structure and dynamics of solvated Ba(II) in dilute aqueous solution - an ab initio QM/MM MD approach. Chem. Phys. 312, 81-88 (2005)

1647. Armunanto, R., Schwenk, C.F. & Rode, B.M. Ab initio QM/MM simulation of Ag+ in 18.6% aqueous ammonia solution: Structure and dynamics investigations. J. Phys. Chem. A 109, 4437-4441 (2005)

1648. Fatmi, M.Q., Hofer, T.S., Randolf, B.R. & Rode, B.M. An extended ab initio QM/MM MD approach to structure and dynamics of Zn(II) in aqueous solution. J. Chem. Phys. 123, 054514/1-054514/8 (2005)

1649. Hofer, T.S., Randolf, B.R. & Rode, B.M. Sr(II) in water: A labile hydrate with a highly mobile structure. J. Phys. Chem. B 110, 20409-20417 (2006)

1650. Morita, S. & Sakai, S. Theoretical studies on the Li+ ion hydration system by the molecular dynamics simulations with ab initio IMiC MO method. Bull. Chem. Soc. Jpn. 79, 397-405 (2006)

1651. Intharathep, P., Tongraar, A. & Sagarik, K. Ab initio QM/MM dynamics of H3O+ in water. J. Comput. Chem. 27, 1723-1732 (2006)

1652. Hofer, T.S., Scharnagl, H., Randolf, B.R. & Rode, B.M. Structure and dynamics of La(III) in aqueous solution - An ab initio QM/MM MD approach. Chem. Phys. 327, 31-42 (2006)

1653. Hofer, T.S., Randolf, B.R. & Rode, B.M. The dynamics of the solvation of Pb(II) in aqueous solution obtained by an ab initio QM/MM MD approach. Chem. Phys. 323, 473-478 (2006)

1654. Fatmi, M.Q., Hofer, T.S., Randolf, B.R. & Rode, B.M. Quantum mechanical charge field molecular dynamics simulation of the TiO2+ ion in aqueous solution. J. Comp. Chem. 28, 1704-1710 (2007)

1655. Kritayakornupong, C. Ab initio QM/MM molecular dynamics simulations of Ru3+ in aqueous solution. Chem. Phys. Lett. 441, 226-231 (2007)

1656. Kritayakornupong, C. & Hannongbua, S. Structure and dynamics of high-spin Ru2+ in aqueous solution: Ab initio QM/MM molecular dynamics simulation. Chem. Phys. 332, 95-101 (2007)

1657. Senn, H.M. & Thiel, W. QM/MM methods for biological systems. Top. Curr. Chem. 268, 173-290 (2007)

1658. Vchirawongkwin, V. & Rode, B.M. Solvation energy and vibrational spectrum of sulfate in water - An ab initio quantum mechanical simulation. Chem. Phys. Lett. 443, 152-157 (2007)

1659. Vchirawongkwin, V., Rode, B.M. & Persson, I. Structure and dynamics of sulfate ion in aqueous solution - An ab initio QMCF MD simulation and large angle X-ray scattering study. J. Phys. Chem. B 111, 4150-4155 (2007)

1660. Takahashi, H., Ohno, H., Yamauchi, T., Kishi, R., Furukawa, S., Nakano, M. & Matubayasi, N. Investigation of the dominant hydration structures among the ionic species in aqueous solution: Novel quantum mechanics/molecular mechanics simulations combined with the theory of energy representation. J. Chem. Phys. 128, 0645076/1-0645076/12 (2008)

1661. Hofer, T.S., Randolf, B.R. & Rode, B.M. Al(III) hydration revisited. An ab initio quantum mechanical charge field molecular dynamics study. J. Phys. Chem B 112, 11726-11733 (2008)

1662. Hofer, T.S., Randolf, B.R. & Rode, B.M. The hydration of the mercury(I)-dimer - A quantum mechanical charge field molecular dynamics study. Chem. Phys. 349, 210-218 (2008)

1663. Brancato, G., Rega, N. & Barone, V. Microsolvation of the Zn(II) ion in aqueous solution: A hybrid QM/MM MD approach using non-periodic boundary conditions. Chem. Phys. Lett. 451, 53-57 (2008)

1664. Haranczyk, M., Gutowski, M. & Warshel, A. Solvation free energies of molecules. The most stable anionic tautomers of uracil. Phys. Chem. Chem. Phys. 10, 4442-4448 (2008)

1665. Kritayakornupong, C., Vchirawongkwin, V., Hofer, T.S. & Rode, B.M. Structural and dynamical properties of hydrogen fluoride in aqueous solution: An ab initio quantum mechanical charge field molecular dynamics simulation. J. Phys. Chem. B 112, 12032-12037 (2008)

1666. Kritayakornupong, C. The Jahn-Teller effect of the Ag2+ ion in aqueous solution: A hybrid ab initio quantum mechanical/molecular mechanical molecular dynamics simulation. Chem. Phys. Lett. 455, 207-212 (2008)

1667. Kritayakornupong, C. The Jahn-Teller effect of the Cr2+ ion in aqueous solution: Ab initio QM/MM molecular dynamics simulations. J. Comp. Chem. 29, 115-121 (2008)

1668. Tongraar, A., Tangkawanwanit, P. & Rode, B.M. A combined QM/MM molecular dynamics simulations study of nitrate anion (NO3-) in aqueous solution. J. Phys. Chem. A 110, 12918-12926 (2006)

1669. Pribil, A.B., Hofer, T.S., Vchirawongkwin, V., Randolf, B.R. & Rode, B.M. Quantum mechanical simulation studies of molecular vibrations and dynamics of oxo-anions in water. Chem. Phys. 346, 182-185 (2008)

1670. Pribil, A.B., Hofer, T.S., Randolf, B.R. & Rode, B.M. Structure and dynamics of phosphate ion in aqueous solution: An ab initio QMCF MD study. J. Comp. Chem. 29, 2330-2334 (2008)

1671. Lim, L.H.V., Hofer, T.S., Pribil, A.B. & Rode, B.M. The hydration structure of Sn(II): An ab initio quantum mechanical charge field molecular dynamics study. J. Phys. Chem. B 113, 4372-4378 (2009)

1672. von Lilienfeld, O.A., Lins, R.D. & Röthlisberger, U. Variational particle number approach for rational compound design. Phys. Rev. Lett. 95, 153002/1-153002/4 (2005)

1673. Zeng, X.C., Hu, H., Hu, X.Q., Cohen, A.J. & Yang, W.T. Ab initio quantum mechanical/molecular mechanical simulation of electron transfer process: Fractional electron approach. J. Chem. Phys. 128, 124510/1-124510/10 (2008)

1674. Hess, G.H. Recherches thermodynamiques. Bull. Sci. Acad. Imper. Sci. 8, 257-272 (1840)

1675. Mayer, J.R. Bemerkungen über die Kräfte der unbelebten Natur. Ann. Chemie Pharm. 42, 233-240 (1842)

1676. Joule, J.P. On the calorific effects of magneto-electricity, and on the mechanical value of heat. Phil. Mag. London 23, 435-443 (1843)

1677. Joule, J.P. On the existence of an equivalent relation between heat and the ordinary forms of mechanical power. Phil. Mag. London 27, 205-207 (1845)

1678. von Helmholtz, H.L.F. Über die Erhaltung der Kraft. G. Reimer, Berlin, Germany (1847)

1679. Clausius, R. Über die bewegende Kraft der Wärme, und die Gesetze, die sich daraus für die Wärmelehre ableiten lassen. Ann. Phys. Chem. 79, 500-524 (1850)

1680. Joule, J.P. On the mechanical equivalent of heat. Phil. Trans. Roy. Soc. London 140, 61-82 (1850)

1681. Thomson, W. On the dynamical theory of heat; with numerical results deduced from Mr. Joule's equivalent of a thermal unit and M. Regnault's observations on steam. Phil. Mag. 4, 105-117 (1852)

1682. Clausius, R. Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Ann. Phys. Chem. 125, 353-400 (1865)

1683. Carnot, S. Réflexions sur la puissance motrice du feu et sur les machines propres a développer cette puissance. Bachelier, Libraire, Paris, France (1824)

1684. Clapeyron, E. Mémoire sur la puissance motrice de la chaleur. J. de l'école polytech. (Paris) 14, 153-191 (1834)

1685. Clausius, R. Über eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie. Ann. Phys. Chem. 93, 481-506 (1854)

1686. Kerker, M. Sadi Carnot and the steam engine engineers. Isis 51, 257-270 (1960)

1687. Nernst, W. Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachr. Kgl. Ges. Wiss. Gött. 1, 1-40 (1906)

1688. Nernst, W. Über die Beziehung zwischen Wärmeentwicklung und maximaler Arbeit bei kondensierten Systemen. Ber. Kgl. Preuss. Akad. Wiss. 52, 993-940 (1906)

1689. Oganessian, Y.T., Utyonkov, V.K., Lobanov, Y.V., Abdullin, F.S., Polyakov, A.N., Sagaidak, R.N., Shirokovsky, I.V., Tsyganov, Y.S., Voinov, A.A., Gulbekian, G.G., Bogomolov, S.L, Gikal, B.N., Mezentsev, A.N., Iliev, S., Subbotin, V.G., Sukhov, A.M., Subotic, K., Zagrebaev, V.I., Vostokin, G.K., Itkis, M.G., Moody, K.J., Patin, J.B., Shaughnessy, D.A., Stoyer, M.A., Wilk, P.A., Kenneally, J.M., Landrum, J.H., Wild, J.F. & Lougheed, R.W. Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions. Phys. Rev. C 74, 044602/1-044602/9 (2006)

1690. Gibbs, J.W. Graphical methods in the thermodynamics of fluids. Trans. Connecticut Acad. 2, 309-342 (1873)

1691. Gibbs, J.W. A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans. Connecticut Acad. 2, 382-404 (1873)

1692. Gibbs, J.W. On the equilibrium of heterogeneous substances. Trans. Connecticut Acad. 3, 108-248 (1876)

1693. Miller, W.L. The method of Willard Gibbs in chemical thermodynamics. Chem. Rev. 1, 293-344 (1925)

1694. Raman, V.V. The permeation of thermodynamics into nineteenth century chemistry. Ind. J. Hist. Sci. Calcutta 10, 16-37 (1975)

1695. Dolby, R.G.A. Thermochemistry versus thermodynamics: The nineteenth century controversy. Hist. Sci. 22, 375-400 (1984)

1696. Duhem, M.P. Sur la relation qui lie l'effet Peltier à la différence de deux métaux en contact. Ann. Chim. Phys. 12, 433-471 (1887)

1697. Duhem, M.P. Le potentiel thermodynamique et ses applications à la mécanique chimique et à l'étude des phénomènes électriques. Hermann, Paris, France (1886)

1698. Kirchhoff, G. Über einen Satz der mechanischen Wärmetheorie, und einige Anwendungen desselben. Ann. Phys. Chem. 179, 177-206 (1858)

1699. Thomson, W. On the thermo-elastic and thermo-magnetic properties of matter. Quart. J. Math. 1, 57-77 (1857)

1700. Horstmann, A. Über den zweiten Hauptsatz der mechanischen Wärmetheorie und dessen Anwendung auf einige Zersetzungserscheinungen. Ann. Chem. Pharm. S8, 112-133 (1872)

1701. Horstmann, A. Theorie der Dissociation. Ann. Chem. Pharm. 170, 192-210 (1873)

1702. von Helmholtz, H.L.F. Die Thermodynamik chemischer Vorgänge. Ber. Kgl. Preuss. Akad. Wiss. Berlin I, 22-39 (1882)

1703. von Helmholtz, H.L.F. Die Thermodynamik chemischer Vorgänge. 2. Beitrag: Versuche an Chlorzink-Kalomel-Elementen. Ber. Kgl. Preuss. Akad. Wiss. Berlin II, 825-836 (1882)

1704. von Helmholtz, H.L.F. Wissenschaftliche Abhandlungen. Volume 1. Barth, Leipzig, Germany (1882)

1705. von Helmholtz, H.L.F. Die Thermodynamik chemischer Vorgänge. 3. Beitrag: Folgerungen die galvanische Polarisation betreffend. Ber. Kgl. Preuss. Akad. Wiss. Berlin I, 647-665 (1883)

1706. von Helmholtz, H.L.F. Wissenschaftliche Abhandlungen. Volume 2. Barth, Leipzig, Germany (1883)

1707. Czapski, S. Über die thermische Veränderlichkeit der electromotorischen Kraft galvanischer Elemente und ihre Beziehung zur freien Energie derselben. Ann. Phys. Chem. 21, 209-243 (1884)

1708. Gibbs, J.W. Electrochemical thermodynamics. (Letter from Professor Willard Gibbs to the secretary of the electrolysis committee of the British Association.) Rep. Brit. Assoc. Adv. Sci. 57, 343-346 (1888)

1709. Cahan, D. Hermann von Helmholtz and the foundations of nineteenth-century science. Univ. California Press , Berkeley, USA (1993)

1710. Imai, T., Nomura, H., Kinoshita, M. & Hirata, F. Partial molar volume and compressibility of alkali-halide ions in aqueous solution: Hydration shell analysis with an integral equation theory of molecular liquids. J. Phys. Chem. B 106, 7308-7314 (2002)

1711. Dalton, J. Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat. Mem. Manchester Lit. and Phil. Soc. 5, 535-602 (1802)

1712. Ben-Naim, A. A new method of defining the activity functions of non-ideal gases and solutions. J. Chem. Educ. 39, 242-245 (1962)

1713. Trasatti, S. Relative and absolute electrochemical quantities. Components of the potential difference across the electrode/solution interface. J. Chem. Soc. Farad. Trans. I 70, 1752-1768 (1974)

1714. Trasatti, S. The concept of absolute electrode potential. An attempt at a calculation. J. Electroanal. Chem. 52, 313-329 (1974)

1715. Ben-Naim, A. Standard thermodynamics of transfer. Uses and misuses. J. Phys. Chem. 82, 792-803 (1978)

1716. Trasatti, S. The concept and physical meaning of absolute electrode potential. A reassessment. J. Electroanal. Chem. 139, 1-13 (1982)

1717. Trasatti, S. Components of the absolute electrode potential. Conceptions and misinterpretations. Materials Chem. and Phys. 15, 427-438 (1986)

1718. Trasatti, S. The absolute electrode potential: An explanatory note (Recommendations 1986). Pure Appl. Chem. 58, 955-966 (1986)

1719. Rockwood, A.L. Absolute half-cell thermodynamics: Electrode potentials. Phys. Rev. A 33, 554-558 (1986)

1720. Rockwood, A.L. Absolute half-cell entropy. Phys. Rev. A 36, 1525-1526 (1987)

1721. Trasatti, S. The “absolute” electrode potential - the end of the story. Electrochim. Acta 35, 269-271 (1990)

1722. Marcus, Y. The thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K. J. Chem. Soc. Farad. Trans. 87, 2995-2999 (1991)

1723. Bartmess, J.E. Thermodynamics of the electron and the proton. J. Phys. Chem. 98, 6420-6424 (1994)

1724. Ben-Naim, A. On the evolution of the concept of solvation thermodynamics. J. Solut. Chem. 5, 475-487 (2001)

1725. Pak, Y. & Wang, S. Accurate experimental values for the free energies of hydration of H+, OH- and H3O+. J. Phys. Chem. A 108, 3692-3694 (2004)

1726. Camaioni, D.M. & Schwerdtfeger, C.A. Comment on “Accurate experimental values for the free energies of hydration of H+, OH- and H3O+” by Palascak M. W. and Shields G. C. ( J. Phys. Chem. A 2004, 108, 3692). J. Phys. Chem. A 109, 10795-10797 (2005)

1727. Llano, J. & Eriksson, L.A. Response to “Comment on `First principles electrochemistry: Electrons and protons reacting as independent ions'~” [J. Chem. Phys. 122, 087103 (2005)]. J. Chem. Phys. 122, 087104/1-087104/2 (2005)

1728. Rockwood, A.L. Comment on “First principles electrochemistry: Electrons and protons reacting as independent ions” [J. Chem. Phys. 117, 10193 (2002)]. J. Chem. Phys. 122, 087103/1-087103/2 (2005)

1729. Bryantsev, V.S., Diallo, M.S. & Goddard III, W.A. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J. Phys. Chem. B 112, 9709-9719 (2008)

1730. Rosenstock, H.M., Draxl, K., Steiner, B.W. & Herron, J.T. Energetics of gaseous ions. J. Phys. Chem. Ref. Data 6 Suppl. 1, 1-783 (1977)

1731. Cohen, E.R., Cvitas, T., Frey, J.G., Holmström, B., Kuchitsu, K., Marquardt, R., Mills, I., Pavese, F., Quack, M., Stohner, J., Strauss, H.L, Takami, M. & Thor, A.J. Quantities, units and symbols in physical chemistry. Edition 3. RSC Publishing, Cambridge, UK (2007)

1732. Nernst, W. Die elektromotorische Wirksamkeit der Jonen. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 4, 129-181 (1889)

1733. Lewis, G.N., Randall, M., Pitzer, K.S. & Brewer, L. Thermodynamics. McGraw-Hill Book Co., New York, USA (1961)

1734. Debye, P. Zur Theorie der spezifischen Wärmen. Ann. Phys. 344, 789-839 (1912)

1735. Einstein, A. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann. Phys. 327, 180-190 (1906)

1736. Einstein, A. Berichtigung zu meiner Arbeit: “Die Plancksche Theorie der Strahlung etc.”. Ann. Phys. 327, 800-800 (1907)

1737. Mayer, J.E. & Mayer, M.G. Statistical mechanics. John Wiley and Sons, New York, USA (1940)

1738. Evans, W.H. & Wagman, D.D. Thermodynamics of some simple sulfur containing molecules. J. Res. Nat. Bur. Stand. 49, 141-148 (1952)

1739. Tetrode, H. Berichtigung zu meiner Arbeit: “Die chemische Konstante der Gase und das elementare Wirkungsquantum”. Ann. Phys. 344, 255-256 (1912)

1740. Tetrode, H. Die chemische Konstante der Gase und das elementare Wirkungsquantum. Ann. Phys. 343, 434-442 (1912)

1741. Sackur, O. Die universelle Bedeutung des sog. elementaren Wirkungsquantums. Ann. Phys. 345, 67-86 (1913)

1742. Mitchell, A.C.G. Entropie des Elektronengases auf Grund der Fermischen Statistik. Z. Phys. 50, 570-576 (1928)

1743. Sommerfeld, A. Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. Z. Phys. 47, 1-32 (1928)

1744. Latimer, W.M. Oxidation potentials. Prentice-Hall, Inc., Englewood Cliffs, New York (1952)

1745. Altshuller, A.P. Lattice entropies - Entropies of vaporization of ions from crystals. J. Chem. Phys. 26, 404-406 (1957)

1746. Morris, D.F.C. & Short, E.L. The Born-Fajans-Haber correlation. Nature 224, 950-952 (1969)

1747. Kelly, C.P., Cramer, C.J. & Truhlar, D.G. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 110, 16066-16081 (2006)

1748. Latimer, W.M. The entropy of aqueous ions and the nature of the entropy of hydration. Chem. Rev. 18, 349-358 (1936)

1749. Breck, W.G. & Lin, J. Entropies of aqueous ions. Trans. Farad. Soc. 61, 2223-2228 (1965)

1750. Fawcett, W.R. Thermodynamic parameters for the solvation of monoatomic ions in water. J. Phys. Chem. B 103, 11181-11185 (1999)

1751. Lias, S.G., Bartmess, J.E., Liebman, J.F., Holmes, J.L., Levin, R.D. & Mallard, W.G. Gas-phase ion and neutral thermochemistry. J. Phys. Chem. Ref. Data 16 Suppl. 1, 1-861 (1988)

1752. Linstrom, P.J. & Mallard, W.G. NIST Chemistry WebBook, NIST standard reference database number 69 (http://webbook.nist.gov, retrieved November 2009). National institute of standards and technology, Gaithersburg, USA (2009)

1753. Gokcen, N.A. & Reddy, R.G. Thermodynamics. Edition 2. Plenum Press, New York, USA (1996)

1754. Bockris, J.O'M. & Reddy, A.K.N. The electrified interface. In: Modern electrochemistry. Volume 2A. Kluwern Academic/Plenum Publishers, New York, USA, pp 771-1033 (2000)

1755. Conway, B.E. Electrochemical supercapacitors: Scientific fundamentals and technological applications. Edition 1. Springer, New York, USA (1999)

1756. Grahame, D.C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41, 441-501 (1947)

1757. Grahame, D.C. Electrode processes and the electrical double layer. Ann. Rev. Phys. Chem. 6, 337-358 (1956)

1758. Devanathan, M.A.V. & Tilak, B.V.K.S.R.A. Structure of electrical double layer at metal-solution interface. Chem. Rev. 65, 635-684 (1965)

1759. Parsons, R. Some problems of electrical double layer. Rev. Pure Appl. Chem. 18, 91-95 (1968)

1760. Payne, R. Electrical double layer: Problems and recent progress. J. Electroanal. Chem. 41, 277-309 (1973)

1761. Harrison, J.A., Randles, J.E.B. & Schiffrin, D.J. The entropy of formation of the mercury-aqueous solution interface and the structure of the inner layer. J. Electroanal. Chem. 48, 359-381 (1973)

1762. Trasatti, S. Solvent adsorption and double layer potential drop at electrodes. Mod. Aspects Electrochem. 13, 81-206 (1979)

1763. Carnie, S.L. & Torrie, G.M. The statistical mechanics of the electrical double layer. Adv. Chem. Phys. 56, 141-253 (1984)

1764. Martynov, G.A. & Salem, R.R. The dense part of the electrical double layer: Molecular or electronic capacitor. Adv. Colloid. Interface Sci. 22, 229-296 (1985)

1765. Borkowska, Z. The electrical double layer at the mercury solution interface in organic solvents. J. Electroanal. Chem. 244, 1-13 (1988)

1766. Parsons, R. Electrical double layer: Recent experimental and theoretical developments. Chem. Rev. 90, 813-826 (1990)

1767. Shubin, V.E. & Kekicheff, P. Electrical double layer structure revisited via a surface force apparatus. Mica interfaces in lithium-nitrate solutions. J. Colloid. Interface Sci. 155, 108-123 (1993)

1768. Gouy, G. Sur la constitution de la charge électrique à la surface d'un électrolyte. J. Phys. 9, 457-468 (1910)

1769. Chapman, D.L. A contribution to the theory of electrocapillarity. Philos. Mag. 25, 475-481 (1913)

1770. Stern, O. Theorie der elektrischen Doppelschicht. Z. Elektrochem. 30, 508-516 (1924)

1771. Quincke, G. Über eine neue Art elektrischer Ströme. Ann. Phys. 183, 1-47 (1859)

1772. Quincke, G. Über die Fortführung materieller Theilchen durch strömende Elektricität. Ann. Phys. 189, 513-598 (1861)

1773. von Helmholtz, H.L.F. Studien über electrische Grenzschichten. Ann. Phys. 243, 337-382 (1879)

1774. Rybkin, Y.R. Stabilisation of the surface potential and determination of the activities of individual ions in solution. Russ. Chem. Rev. 44, 625-636 (1975)

1775. Langmuir, I. The relation between contact potentials and electrochemical action. Trans. Am. Electrochem. Soc. 29, 125-182 (1916)

1776. Ampère, A.-M. Théorie mathématique des phénomènes électro-dynamiques uniquement déduits de l'expérience. Mémoires de l'Académie Royale des Science de l'Institut de France VI, 175-388 (1823)

1777. Faraday, M. Experimental researches in electricity. Volume 1. Edition 2. Richard and John Edward Taylor, printers and publishers to the University of London, reprinted from the Philosophical Transactions of 1831-1838, London, UK (1839)

1778. Lange, E. & Mishchenko, K.P. Zur Thermodynamik der Ionensolvatation. Z. Phys. Chem. A 149, 1-41 (1930)

1779. Trasatti, S. & Parsons, R. Interphases in systems of conducting phases. Pure Appl. Chem. 55, 1251-1268 (1983)

1780. Bockris, J.O'M. & Reddy, A.K.N. Electrodics. In: Modern electrochemistry. Volume 2A. Kluwern Academic/Plenum Publishers, New York, USA, pp 1035-1400 (2000)

1781. Koczorowski, Z. Voltaic cells in electrochemistry and surface chemistry of liquids. In: Modern aspects of electrochemistry. Volume 34. Bockris, J.O'M., Ed. Kluwer Academic/Plenum Publishers, New York, USA, pp 13-52 (2001)

1782. Frumkin, A.N. & Damaskin, B. Remark on the paper of S. Trasatti: The concept of absolute electrode potential. An attempt at a calculation. J. Electroanal. Chem. 66, 150-154 (1975)

1783. Trasatti, S. On the concept and the possibility of experimental determination of absolute electrode potentials. J. Chem. Phys. 69, 2938-2939 (1978)

1784. Gomer, R. & Tryson, G. Reply to Comment “On the concept and the possibility of experimental determination of absolute electrode potentials” by S. Trasatti. J. Chem. Phys. 69, 2939-2941 (1978)

1785. Reiss, H. The Fermi level and the redox potential. J. Phys. Chem. 89, 3783-3791 (1985)

1786. Reiss, H. The absolute electrode potential. Tying the loose ends. J. Electrochem. Soc. 135, 247C-258C (1988)

1787. Tsiplakides, D. & Vayenas, C.G. Electrode work function and absolute potential scale in solid-state electrochemistry. J. Electrochem. Soc. 148, E189-E202 (2001)

1788. Tsiplakides, D. & Vayenas, C.G. The absolute potential scale in solid state electrochemistry. Solid State Ionics 152-153, 625-639 (2002)

1789. Hansen, W.N. & Kolb, D.M. The work function of emersed electrodes. J. Electroanal. Chem. 100, 493-500 (1979)

1790. Kötz, E.R., Neff, H. & Müller, K. A UPS, XPS and work function study of emersed silver, platinum and gold electrodes. J. Electroanal. Chem. 215, 331-344 (1986)

1791. Trasatti, S. Physical, chemical and structural aspects of the electrode/solution interface. Electrochim. Acta 28, 1083-1093 (1983)

1792. Samec, Z., Johnson, B.W. & Doblhofer, K. The absolute electrode potential of metal electrodes emersed from liquid electrolytes. Surf. Sci. 264, 440-448 (1992)

1793. Donald, W.A., Leib, R.D., O'Brien J.T., Bush, M.F., Williams, Absolute standard hydrogen electrode potential measured by reduction of aqueous nanodrops in the gas phase. J. Am. Chem. Soc. 130, 3371-3381 (2008)

1794. Donald, W.A., Leib, R.D., O'Brien J.T., Williams, Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy. Chem. Eur. J. 15, 5926-5934 (2009)

1795. Donald, W.A., Leib, R.D., Demireva, M., O'Brien J.T., Prell, J.S., Williams, Directly relating reduction energies of gaseous Eu(H2O)n3+, n=55-140, to aqueous solution: the absolute SHE potential and real proton solvation energy. J. Am. Chem. Soc. 131, 13328-13337 (2009)

1796. Pleskov, Y.V. Comments on “The Absolute Potential of a Standard Hydrogen Electrode: A new Estimate”, by H. Reiss and A. Heller. J. Phys. Chem. 91, 1691-1692 (1987)

1797. Hansen, W.F. & Hansen, G.J. Absolute half-cell potential: A simple direct measurement. Phys. Rev. A 36, 1396-1402 (1987)

1798. Heyrovska, R. Absolute potentials of the hydrogen electrode and of aqueous redox couples. Electrochem. Solid-State Lett. 12, F29-F30 (2009)

1799. Slater, J.C. Atomic shielding constants. Phys. Rev. 36, 57-64 (1930)

1800. Hehre, W.J., Radom, L., v. R. Schleyer, P. & Pople, J.A. Ab initio molecular orbital theory. Wiley, New York, USA (1986)

1801. Nagata, T. Noble gas clusters doped with a metal ion I: Ab initio studies of Na+Arn. J. Phys. Chem. A 108, 683-690 (2004)

1802. Jortner, J. & Noyes, R.M. Some thermodynamic properties of the hydrated electron. J. Phys. Chem. 70, 770-774 (1966)

1803. Han, P. & Bartels, P.M. Reevaluation of arrhenius parameters for H + OH-=(e-)aq + H2O and the enthalpy and entropy of hydrated electrons. J. Phys. Chem. 94, 7294-7299 (1990)

1804. Boero, M., Parrinello, M., Terakura, K., Ikeshoji, T. & Liew, C.C. First-principles molecular-dynamics simulations of a hydrated electron in normal and supercritical water. Phys. Rev. Lett. 90, 226403/1-226403/4 (2003)

1805. Bartels, D.M., Takahashi, K., Cline, J.A., Marin, T.W. & Jonah, C.D. Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron. J. Phys. Chem. A 109, 1299-1307 (2005)

1806. Novakovskaya, Y.V. Electron hydration energy: Nonempirical estimate. Protect. Metals 43, 129-140 (2007)

1807. Wang, X.-J., Zhu, Q. & Xiang-Yuan, L. Hydration free energy and absorption spectrum of an extra electron in water by quantum-continuum model. J. Theor. Comp. Chem. 7, 767-775 (2008)

1808. Donald, W.A., Leib, R.D., O'Brien, J.T., Holm, A.I.S. & Williams, E.R. Nanocalorimetry in mass spectrometry: A route to understanding ion and electron solvation. Proc. Natl. Acad. Sci. USA 105, 18102-18107 (2008)

1809. Donald, W.A., Demireva, M., Leib, R.D., Aiken, M.J. & Williams, E.R. Electron hydration and ion-electron pairs in water clusters containing trivalent metal ions. J. Am. Chem. Soc. 132, 4633-4640 (2010)

1810. Lang, N.D. & Kohn, W. Theory of metal surfaces: Work function. Phys. Rev. B 3, 1215-1223 (1971)

1811. Fonda, L. Emission electron diffraction and holography: A theoretical survey. Surf. Rev. Lett. 3, 1603-1626 (1996)

1812. Völkl, E., Allard, L.F. & Joy, D.C. Introduction to electron holography. Kluwer Academic/Plenum Publishers, New York, USA (1999)

1813. Lichte, H. & Lehmann, M. Electron holography - basics and applications. Reports Prog. Phys. 71, 016102/1-016102/46 (2008)

1814. Midgley, P.A. & Dunin-Borkowski, R.E. Electron tomography and holography in materials science. Nature Materials 8, 271-280 (2009)

1815. Guinier, A. X-ray diffraction: In crystals, imperfect crystals, and amorphous bodies. Dover Publications, N.Y., USA (1994)

1816. Als-Nielsen, J. Elements of modern x-ray physics. John Wiley & Sons, New York, USA (2001)

1817. Peng, L.M., Dudarev, S.L. & Whelan, M.J. High-energy electron diffraction and microscopy. Oxford University Press, Oxford, UK (2004)

1818. Leung, K. & Marsman, M. Energies of ions in water and nanopores within density functional theory. J. Chem. Phys. 127, 154722/1-154722/10 (2007)

1819. Bard, A.J. & Faulkner, L.R. Electrochemical methods: Fundamentals and applications. Edition 2. Wiley, New York, USA (2000)

1820. Lewis, G.N. & Kraus, C.A. The potential of the sodium electrode. J. Am. Chem. Soc. 32, 1459-1468 (1910)

1821. Lewis, G.N. & Keyes, F.G. The potential of the potassium electrode. J. Am. Chem. Soc. 34, 119-122 (1912)

1822. Lewis, G.N. & Keyes, F.G. The potential of the lithium electrode. J. Am. Chem. Soc. 35, 340-344 (1913)

1823. Lewis, G.N. & Argo, W.L. The potential of the rubidium electrode. J. Am. Chem. Soc. 37, 1983-1990 (1915)

1824. Bent, H.E., Forbes, G.S. & Forziati, A.F. The normal electrode potential of cesium. J. Am. Chem. Soc. 61, 709-715 (1939)

1825. Robinson, R.A. & Stokes, R.H. Electrolyte solutions. Edition 2. Butterworths, London, UK (1970)

1826. Harned, H.S. & Owen, B.B. The physical chemistry of electrolytic solutions. Edition 3. Reinhold Publishing Corp., New York, USA (1958)

1827. Henderson, P. Zur Thermodynamik der Flüssigkeitsketten. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 59, 118-127 (1907)

1828. Henderson, P. Zur Thermodynamik der Flüssigkeitsketten. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 63, 325-345 (1908)

1829. de Bethune, A.J., Licht, T.S. & Swendeman, N. The temperature coefficients of electrode potentials. The isothermal and thermal coefficients - The standard ionic entropy of electrochemical transport of the hydrogen ion. J. Electrochem. Soc. 106, 616-625 (1959)

1830. Agar, J.N. & Turner, J.C.R. Thermal diffusion in solutions of electrolytes. Proc. Roy. Soc. London A 255, 307-330 (1960)

1831. Tyrrell, H.J.C. Diffusion and heat flow in liquids. Butterworths, London, UK (1961)

1832. Agar, J.N. Thermogalvanic cells. In: Advances in electrochemistry and electrochemical engineering. Volume 3. Delahay, P., Ed. Interscience Publishers, Div. of John Wiley & Sons, New York, USA, pp 31-121 (1963)

1833. Guyot, M.J. Effet Volta et couches monomoléculaires. Comptes rendus hebdomadaires des séances de l'académie des sciences 159, 307-311 (1914)

1834. Guyot, M.J. Effet Volta métal-électrolyte et couches monomoléculaires. Ann. Physique 2, 506-519 (1924)

1835. Bichat, E. & Blondlot, R. Mesure de la différence de potentiel des couches électriques qui recouvrent deux liquides au contact. J. Physique 2, 533-551 (1883)

1836. Parsons, R. Manual of symbols and terminology for physicochemical quantities and units. Pure. Appl. Chem. 37, 501-516 (1974)

1837. Hamelin, A. & Lecoeur, J. The orientation dependence of zero charge potentials and surface energies of gold crystal faces. Surf. Sci. 57, 771-774 (1976)

1838. Frumkin, A.N., Petrii, O.A. & Damaskin, B.B. Potentials of zero charge. In: Comprehensive treatise of electrochemistry. Volume 1. Bockris, J.O'M., Conway, B.E. & Yeager, E., Eds. Plenum, New York, USA, pp 201-289 (1980)

1839. Trasatti, S. & Lust, E. The potential of zero charge. In: Modern aspects of electrochemistry. Volume 33. White, R.E., Bockris, J.O. & Conway, B.E., Eds. Kluwer Academic/Plenum Publ., New York, USA, pp 1-215 (1999)

1840. Lippmann, G. Relations entre les phénomènes électriques et capillaires. Ann. Chim. Phys. 5, 494-549 (1875)

1841. Lippmann, G. Beziehungen zwischen den capillaren und elektrischen Erscheinungen. Ann. Phys. 225, 546-561 (1873)

1842. Lippmann, G. Bemerkungen über einige neuere electrocapillare Versuche. Ann. Phys. 247, 316-324 (1880)

1843. Frumkin, A.N. Die Elektrokapillarkurve. Ergeb. Exakt. Naturw. 7, 235-275 (1928)

1844. Morcos, I. The electrocapillary phenomena of solid electrodes. J. Electroanal. Chem. 62, 313-340 (1975)

1845. Bichat, E. & Blondlot, R. Sur les différences électriques entre les liquides et sur le rôle de l'air dans la mesure électrométrique de ces différences. Comptes rendus hebdomadaires des sánces de l'académie des sciences 100, 791-793 (1885)

1846. Meyer, G. Zur Theorie des Capillarelectrometers. Ann. Phys. 281, 508-522 (1892)

1847. Wiedeburg, O. Ueber die Potentialdifferenzen zwischen Metallen und Elektrolyten. Ann. Phys. 295, 742-749 (1896)

1848. Schreber, K. Zur Theorie des Capillarelectrometers. Ann. Phys. 289, 109-134 (1894)

1849. Meyer, G. Capillarelectrometer und Tropfelectroden. Ann. Phys. 289, 845-873 (1894)

1850. Meyer, G. Ueber die Potentialdifferenzen zwischen Metallen und Flüssigkeiten. Ann. Phys. 292, 680-699 (1895)

1851. Palmaer, W. Über das absolute Potential der Kalomelelektrode. Z. Elektrochem. 9, 754-757 (1903)

1852. Billitzer, J. Zu den kapillarelektrischen Bewegungen und über einen Strom im offenen Element. Ann. Phys. 318, 827-835 (1904)

1853. Nernst, W, Ueber Berührungselectricität. Ann. Phys. S294, 1-13 (1896)

1854. Braun, F. Ueber Tropfelectroden. Ann. Phys. 277, 448-462 (1890)

1855. Palmaer, W. Ueber die Wirkungsart der Tropfelektrode. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 25, 265-283 (1898)

1856. Meyer, G. Ueber Tropfelektroden. Ann. Phys. 303, 433-438 (1899)

1857. Billitzer, J. Nachtrag zu meiner Abhandlung: Versuche mit Tropfelektroden usw. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 49, 709-710 (1904)

1858. Billitzer, J. Elektrische Doppelschicht und absolutes Potential. Kontaktelektrische Studien I. Ann. Phys. 316, 902-913 (1903)

1859. Billitzer, J. Über die Elektrizitätserregung durch die Bewegung fester Körper in Flüssigkeiten. Kontaktelektrische Studien II. Ann. Phys. 316, 937-956 (1903)

1860. Whitney, W.R. & Blake, J.C. The migration of colloids. J. Am. Chem. Soc. 26, 1339-1387 (1904)

1861. Goodwin, H.M. & Sosman, R.B. Billitzers Methode zur Bestimmung absoluter Potentialdifferenzen. Z. Elektrochem. 12, 192-193 (1906)

1862. Billitzer, J. Zur Bestimmung absoluter Potentialdifferenzen. Z. Elektrochem. 12, 281-316 (1906)

1863. Freundlich, H. & Mäkelt, E. Über den absoluten Nullpunkt des Potentials. Z. Elektrochem. 15, 161-165 (1909)

1864. Gordon, C.M. Eine neue Methode für die Bestimmung der Polarisationskapazität. Z. Elektrochem. 3, 163-164 (1896)

1865. Gordon, C.M. Über Messung der Polarisationskapazität. Wied. Ann. 61, 1-29 (1897)

1866. Scott, A.M. Studien über Polarisationskapazität. Wied. Ann. 67, 388-420 (1899)

1867. Krüger, F. Über Polarisationskapazität. Z. Phys. Chem. (Stöchiometrie u. Verwandtschaftslehre) 45, 1-74 (1903)

1868. Krüger, F. Theorie der Polarisationskapazität. Nachr. Kgl. Ges. Wiss. Gött. (2), 59-74 (1903)

1869. Fajans, K. Löslichkeit und Ionisation vom Standpunkte der Atomstruktur. Naturwiss. 9, 729-738 (1921)

1870. Baughan, E.C. The heat of hydration of the proton. J. Chem. Soc. (Oct.), 1403-1403 (1940)

1871. Benjamin, L. & Gold, V. A table of thermodynamic functions of ionic hydration. Trans. Faraday Soc. 50, 797-799 (1954)

1872. Morris, D.F.C. Ionic radii and enthalpies of hydration of ions. Struct. Bond. 4, 63-82 (1968)

1873. Salomon, M. The thermodynamics of ion solvation in water and propylene carbonate. J. Phys. Chem. 74, 2519-2524 (1970)

1874. Morris, D.F.C Estimation of thermodynamic properties for hydration of individual alkali metal and halide ions. Electrochim. Acta 27, 1481-1486 (1982)

1875. Tissandier, M.D., Cowen, K.A., Feng, W.Y., Gundlach, E., Cohen, M.H., Earhart, A.D., Coe, J.V. & Tuttle Jr., T.R. The proton's absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J. Phys. Chem. A 102, 7787-7794 (1998)

1876. Tissandier, M.D., Cowen, K.A., Feng, W.Y., Gundlach, E., Cohen, M.H., Earhart, A.D., Coe, J.V. & Tuttle Jr., T.R. Correction to “The proton's absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data.”, J. Phys. Chem. A 102, 7787-7794 (1998). J. Phys. Chem. A 102, 9308-9308 (1998)

1877. Marcus, Y. Ion properties. Marcel Dekker, Inc., New York, USA (1997)

1878. Grunwald, E., Baugham, G. & Kohnstam, G. The solvation of electrolytes in dioxane-water mixtures, as deduced from the effect of solvent change on the standard partial molar free energy. J. Am. Chem. Soc. 82, 5801-5811 (1960)

1879. Koepp, H.-M., Wendt, H. & Strehlow, H. Der Vergleich der Spannungsreihen in verschiedenen Solventien. II. Z. Elektrochem. 64, 483-491 (1960)

1880. Somsen, G. Enthalpies of solvation of alkali halides in formamide. III. Structural considerations. Rec. Trav. Chim. 85, 526-537 (1966)

1881. Criss, C.M., Held, R.P. & Luksha, E. Thermodynamic properties of nonaqueous solutions. V. Ionic entropies: Their estimation and relationship to the structure of electrolyte solutions. J. Phys. Chem. 72, 2970-2975 (1968)

1882. Somsen, G. & Weeda, L. The evaluation of ionic enthalpies of solvation. J. Electroanal. Chem. 29, 375-382 (1971)

1883. Krishnan, K.S. & Friedman, H.L. Solvation enthalpies of electrolytes in methanol and dimethylformamide. J. Phys. Chem. 75, 3606-3612 (1971)

1884. Kim, J.I. Preferential solvation of single ions. A critical study of the Ph4AsPh4B assumption for single ion thermodynamics in amphiprotic and dipolar-aprotic solvents. J. Phys. Chem. 82, 191-199 (1978)

1885. Chakravarty, S.K. & Lahiri, S.C. The thermodynamics of ionisation of glycine in methanol+water mixtures and the determination of single ion thermodynamics. Thermochimica Acta 99, 243-251 (1986)

1886. Chakravorty, S.K., Sarkar, S.K. & Lahiri, S.C. The thermodynamics of ionization of α-alanine in methanol+water mixtures and the determination of single ion thermodynamics. Thermochimica Acta 114, 245-256 (1987)

1887. Woldan, M. Standard enthalpies of transfer of alkali-metal and halide ions from water to water-urea mixtures. Thermochimica Acta 120, 97-106 (1987)

1888. Kelly, C.P., Cramer, C.J. & Truhlar, D.G. Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide. J. Phys. Chem. B. 111, 408-422 (2007)

1889. Hefter, G.T., Grolier, J.-P. E., Roux, A.H. & Roux-Desgranges, G. Apparent molar heat capacities and volumes of electrolytes and ions in acetonitrile-water mixtures. J. Solut. Chem. 19, 207-223 (1990)

1890. Marcus, Y. & Hefter, G. The standard partial molar volumes of electrolytes and ions in non-aqueous solvents. Chem. Rev. 104, 3405-3452 (2004)

1891. Izutsu, K. Electrochemistry in nonaqueous solutions. Edition 2. Wiley-VCH, Weinheim, Germany (2009)

1892. Feakins, D. & Watson, P. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. Part II. Properties of ion constituents. J. Chem. Soc. (Oct.), 4734-4741 (1963)

1893. Feakins, D. & Watson, P. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. Part I. The cell H2|HX|AgX-Ag (X=Br,I) in 10% and 43·12% mixtures of methanol and water. J. Chem. Soc. (Oct.), 4686-4691 (1963)

1894. Arnett, E.M. & McKelvey, D.R. Enthalpies of transfer from water to dimethyl sulfoxide for some ions and molecules. J. Am. Chem. Soc. 88, 2598-2599 (1966)

1895. Feakins, D., Smith, B.C. & Thakur, L. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. 4. Enthalpies of transfer of alkali-metal halides from water to a 20% mixture of dioxan and water. J. Chem. Soc. A (6), 714-718 (1966)

1896. Alexander, R. & Parker, A.J. Solvation of ions. XII. Changes in the standard chemical potential of anions on transfer from protic to dipolar aprotic solvents. J. Am. Chem. Soc. 89, 5549-5551 (1967)

1897. Friedman, H.L. Regularities and specific effects in enthalpies of transfer of ions from water to aprotic solvents. J. Phys. Chem. 71, 1723-1726 (1967)

1898. Coetzee, J.F. & Campion, J.J. Solute-solvent interaction. II. Relative activities of anions in acetonitrile and water. J. Am. Chem. Soc. 89, 2517-2521 (1967)

1899. Coetzee, J.F. & Campion, J.J. Solute-solvent interaction. I. Evaluations of relative activities of reference cations in acetonitrile and water. J. Am. Chem. Soc. 89, 2513-2517 (1967)

1900. Abraham, M.H. Entropies of transfer of tetra-alkylammonium ions from water to methanol, dimethylformamide, and acetonitrile. J. Chem. Soc. - Chem. Comm. 15, 888-889 (1972)

1901. Feakins, D. & Voice, P.J. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. 14. Free energies of transfer of alkali-metal chlorides from water to 10-99% (w/w) methanol-water mixtures at 25°C. J. Chem. Soc. Faraday Trans. I 68, 1390-1405 (1972)

1902. Cox, B.G. & Parker, A.J. Solvation of ions. XVII. Free energies, heats and entropies of transfer of single ions from protic to dipolar aprotic solvents. J. Am. Chem. Soc. 95, 402-407 (1973)

1903. Diggle, J.W. & Parker, A.J. Solvation of ions - XX. The ferrocene-ferricinium couple and its role in the estimation of free energies of transfer of single ions. Electrochim. Acta 18, 975-979 (1973)

1904. Feakins, D. & Voice, P.J. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. 16. Free energies of transfer of sodium bromide and iodide from water to 10-99% (w/w) methanol+water mixtures at 25°C. J. Chem. Soc. Faraday Trans. I, 1711-1720 (1973)

1905. Fuchs, R. & Hagan, C.P. Single-ion enthalpies of transfer from water to aqueous dimethyl sulfoxide solutions. J. Phys. Chem. 77, 1797-1800 (1973)

1906. Wells, C.F. Ionic solvation in methanol+water mixtures. Free energies of transfer from water. J. Chem. Soc. Faraday Trans. 1 69, 984-992 (1973)

1907. Cox, B.G. & Parker, A.J. Entropies of solution of ions in water. J. Am. Chem. Soc. 95, 6879-6884 (1973)

1908. Feakins, D., Willmott, A.S. & Willmott, A.R. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. 15. Free-energies of transfer of cadmium chloride from water to 10-40% (w/w) methanol-water mixtures at 25°C; dissociation of CdCl+; use of dilute cadmium amalgam electrodes. The group II cations. J. Chem. Soc. Faraday Trans. I 69, 122-131 (1973)

1909. Cox, B.G., Hedwig, G.R., Parker, A.J. & Watts, D.W. Solvation of ions. 19. Thermodynamic properties for transfer of single ions between protic and dipolar aprotic-solvents. Aust. J. Chem. 27, 477-501 (1974)

1910. Hedwig, G.R. & Parker, A.J. Solvation of ions. XXIII. Enthalpies of transfer of some divalent metal ions from water to nonaqueous solvents. J. Am. Chem. Soc. 96, 6589-6593 (1974)

1911. Wells, C.F. Ionic solvation in water+co-solvent mixtures. Part 2. Free energies of transfer of single ions from water into mixtures of water with acetone, isopropanol, glycerol or methanol. J. Chem. Soc. Faraday Trans. 1 70, 694-704 (1974)

1912. Feakins, D., Hickey, B.E., Lorimer, J.P. & Voice, P.J. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. 17. Free energies of transfer of alkali-metal chlorides from water to 10-40% (w-w) dioxan + water mixtures, and of potassium bromide and iodide to 20% mixture, at 25°C. J. Chem. Soc. Faraday Trans. I 71, 780-783 (1975)

1913. Hedwig, G.R., Owensy, D.A. & Parker, A.J. Solvation of ions. XXIV. Entropies of transfer of some divalent metal ions from water to nonaqueous solvents. J. Am. Chem. Soc. 97, 3888-3894 (1975)

1914. Wells, C.F. Ionic solvation in water+co-solvent mixtures. Part 3. Free energies of transfer of single ions from water into water+ethylene glycol mixtures. J. Chem. Soc. Faraday Trans. 1 71, 1868-1875 (1975)

1915. Feakins, D. & Allan, C.T. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. Part 18. Enthalpies of transfer of alkali-metal halides from water to dioxan+water mixtures; structural effects and comparison with large ions. J. Chem. Soc. Faraday Trans. 1 72, 314-322 (1976)

1916. Hopkins Jr., H.P. & Alexander, C.J. Transfer Gibbs free energies from H2O to CH3OH for a series of substituted phenyltropylium ions, malachite green, and crystal violet. J. Solut. Chem. 5, 249-255 (1976)

1917. Wells, C.F. Ionic solvation in water+co-solvent mixtures. Part 4. Free energies of transfer of single ions from water into water+t-butyl alcohol mixtures. J. Chem. Soc. Faraday Trans. 1 72, 601-609 (1976)

1918. Parker, A.J. Solvation of ions - Enthalpies, entropies and free energies of transfer. Electrochim. Acta 21, 671-679 (1976)

1919. Clune, T.A., Feakins, D. & McCarthy, P.J. Free-energies of transfer of alkali-metal chlorides from water to tert-butanol-water mixtures: Comparison between amalgam and glass-electrode results. J. Electroanal. Chem. 84, 199-201 (1977)

1920. Nedermeijer-Denessen, H.J.M., de Ligny, C.L. & Remijnse, A.G. The significance of large negative ions in the estimation of standard free enthalpies of transfer of single ions. J. Electroanal. Chem. 77, 153-161 (1977)

1921. Wells, C.F. Ionic solvation in water+co-solvent mixtures. Part 5. Free energies of transfer of large single ions from water into water+methanol with the “neutral” component removed. J. Chem. Soc. Faraday Trans. 1 74, 636-643 (1977)

1922. Mayer, U. Zusammenhang zwischen freien Standard-Transferenthalpien von Ionen und empirischen Lösungsmittelparametern. Monatshefte f. Chemie 108, 1479-1495 (1977)

1923. Parker, A.J. & Waghorne, W.E. Solvation of ions. XXVI. Free energies of transfer of ions to multi-site solvents and solvent mixtures. Aust. J. Chem. 31, 1181-1187 (1978)

1924. Wells, C.F. Ionic solvation in water+co-solvent mixtures. Part 6. Free energies of transfer of single ions from water into water+dioxan mixtures. J. Chem. Soc. Faraday Trans. 1 74, 1569-1582 (1978)

1925. Wells, C.F. Ionic solvation in water+co-solvent mixtures. Part 5. Free energies of transfer of large single ions from water into water+methanol with “neutral” component removed. J. Chem. Soc. Faraday Trans. I 74, 636-643 (1978)

1926. Abraham, M.H. & de Namor, A.F.D. Free energies and entropies of transfer of ions from water to methanol, ethanol and 1-propanol. J. Chem. Soc. Faraday Trans. 1 74, 2101-2110 (1978)

1927. Feakins, D., Hickey, B.E. & Voice, P.J. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. Part 19. Free-energies of transfer of alkali-metal chlorides from water to DMSO + water mixtures up to 40% (w-w) DMSO, of sodium-chloride to 60% (w-w) DMSO and of potassium-bromide and iodide to 10% (w-w) DMSO. Comparison with silver-chloride. J. Chem. Soc. Faraday Trans. I 75, 907-913 (1979)

1928. Kundu, K.K. & Das, A.K. Transfer free energies of some ions from water to dimethylsulfoxide-water and urea-water mixtures. J. Solut. Chem. 8, 259-265 (1979)

1929. Lahiri, S.C. & Aditya, S. Solvation and free energies of transfer of single ions. J. Ind. Chem. Soc. 56, 1112-1124 (1979)

1930. Basumullick, I.N. & Kundu, K.K. Transfer free energies of alkali metal chlorides and of some individual ions in glycerol and water mixtures. Can. J. Chem. 58, 79-85 (1980)

1931. de Valera, E., Feakins, D. & Waghorne, W.E. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. Part 20. Enthalpies of transfer of alkali-metal halides in the methanol water-system from enthalpies of dilution. J. Chem. Soc. Faraday Trans. I 76, 560-569 (1980)

1932. Kundu, K.K. & Parker, A.J. Solvation of ions. XXVII. Comparison of methods to calculate single ion free energies of transfer in mixed solvents. J. Solut. Chem. 10, 847-861 (1981)

1933. Sidahmed, I.M. & Wells, C.F. Solubility of salts of hexachlorothenate(IV) ions with complex cations in water and in water and alcohol mixtures: Free energies of transfer of the complex ions. Dalton Trans. 10, 2034-2038 (1981)

1934. Wells, C.F. Ionic solvation in water+co-solvent mixtures. Part 7. Free energies of transfer of single ions from water into water+dimethylsulphoxide mixtures. J. Chem. Soc. Faraday Trans. 1 77, 1515-1528 (1981)

1935. Burgess, J., Peacock, R.D. & Rodgers, J.H. Enthalpies of transfer of ions from water into aqueous hydrogen fluoride. J. Fluor. Chem. 19, 333-347 (1982)

1936. Singh, P., Macleod, I.D. & Parker, A.J. Solvation of ions. 30. Thermodynamics of transfer of copper ions from water to solvent mixtures. J. Solut. Chem. 11, 495-508 (1982)

1937. Wells, C.F. Ionic solvation in water + co-solvent mixtures. Part 8. Total free energies of transfer and free energies of transfer with the “neutral” component removed of single ions from water into water + acetone. Thermochimica Acta 53, 67-87 (1982)

1938. de Namor, A.F.D., Hill, T. & Sigstad, E. Free energies of transfer of 1:1 electrolytes from water to nitrobenzene. Partition of ions in the water+nitrobenzene system. J. Chem. Soc. Faraday Trans. 1 79, 2713-2722 (1983)

1939. Marcus, Y. Thermodynamic functions of transfer of single ions from water to non-aqueous and mixed solvents: Part 1 - Gibbs free energies of transfer to nonaqueous solvents. Pure Appl. Chem. 55, 977-1021 (1983)

1940. Wells, C.F. The spectrophotometric solvent sorting method for the determination of free energies of transfer of individual ions - A critical appraisal. Aust. J. Chem. 36, 1739-1752 (1983)

1941. de Namor, A F.D., Contreras, E. & Sigstad, E. Free energies of transfer of 1:1 electrolytes from water to butan-1-ol. J. Chem. Soc. Faraday Trans. 1 79, 1001-1007 (1983)

1942. Miyaji, K. & Morinaga, K. Enthalpies of transfer of monovalent ions from water to water acetonitrile mixtures. Bull. Chem. Soc. Jpn. 56, 1861-1862 (1983)

1943. Feakins, D., Knox, M. & Hickey, B.E. Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. Part 21. Free energies of transfer of alkali-metal halides in the acetone+water system to 60% (w/w) acetone with cation-selective electrodes. J. Chem. Soc. Faraday Trans. I 80, 961-968 (1984)

1944. Ishiguro, S. & Ohtaki, H. Enthalpies of transfer of single ions and metal-complexes from water to an aqueous dioxane solution. Bull. Chem. Soc. Jpn. 57, 2622-2627 (1984)

1945. Wells, C.F. Ionic solvation in water+cosolvent mixtures. Part 9. Free energies of transfer of single ions from water into water+ethanol mixtures. J. Chem. Soc. Faraday Trans. 1 80, 2445-2458 (1984)

1946. Chakraborty, S.K. & Lahiri, S.C. Enthalpy and entropy of transfer of hydrogen ion from water to mixed solvents. J. Therm. Anal. 29, 815-820 (1984)

1947. Groves, G.S. & Wells, C.F. Ionic solvation in water-cosolvent mixtures. Part 11. Free energies of transfer of single ions from water into water-urea mixtures. J. Chem. Soc. Faraday Trans. 1 81, 3091-3102 (1985)

1948. Groves, G.S. & Wells, C.F. Ionic solvation in water-cosolvent mixtures. Part 10. Free energies of transfer of single ions from water into water+ethanonitrile mixtures. J. Chem. Soc. Faraday Trans. 1 81, 1985-1997 (1985)

1949. Groves, G.S. & Wells, C.F. Ionic solvation in water cosolvent mixtures. Part 2. Free energies of transfer of single ions from water into water urea mixtures. J. Chem. Soc. Faraday Trans. I 81, 3091-3102 (1985)

1950. Marcus, Y. Thermodynamic functions of transfer of single ions from water to non-aqueous and mixed solvents. Part 3: Standard potentials of selected electrodes. Pure Appl. Chem. 57, 1129-1132 (1985)

1951. Marcus, Y. Thermodynamic functions of transfer of single ions from water to non-aqueous and mixed solvents. Part 2: Enthalpies and entropies of transfer to nonaqueous solvents. Pure Appl. Chem. 57, 1103-1128 (1985)

1952. Elsemongy, M.M. & Reicha, F.M. Absolute electrode potentials in dimethyl sulphoxide-water mixtures and transfer free energies of individual ions. Thermochimica Acta 108, 115-131 (1986)

1953. Groves, G.S. & Wells, C.F. Free energy of transfer of cobalt(III) complexes from water into water-t-butyl alcohol mixtures. J. Solut. Chem. 15, 211-219 (1986)

1954. Sidahmed, I.M. & Wells, C.F. Ionic solvation in water-cosolvent mixtures. Part 12. Free energies of transfer of single ions from water into water-propan-1-ol mixtures. J. Chem. Soc. Faraday Trans. 1 82, 2577-2588 (1986)

1955. Hefter, G.T. & McLay, P.J. Solvation of fluoride ions. II. Enthalpies and entropies of transfer from water to aqueous methanol. Aust. J. Chem. 41, 1971-1975 (1986)

1956. Carthy, G., Feakins, D. & Waghorne, W.E. Enthalpies of transfer of tetra-alkylammonium halides from water to water propan-1-ol mixtures at 25°C. J. Chem. Soc. Faraday Trans. I 83, 2585-2592 (1987)

1957. Elsemongy, M.M. & Abu Elnader, H.M. Absolute electrode potentials in dioxane-water solvent mixtures and transfer free energies of individual ions. Thermochimica Acta 120, 261-278 (1987)

1958. Sidahmed, I.M. & Wells, C.F. Ionic solvation in water cosolvent mixtures. Part 13. Free energies of transfer of single ions from water into water tetrahydrofuran mixtures. J. Chem. Soc. Faraday Trans. I 83, 439-449 (1987)

1959. Groves, G.S., Halawani, K.H. & Wells, C.F. Ionic solvation in water-cosolvent mixtures. Part 14. Free energies of transfer of single ions from water into water-ethylene carbonate and water-propylene carbonate mixtures. J. Chem. Soc. Faraday Trans. 1 83, 1281-1291 (1987)

1960. Johnsson, M. & Persson, I. Determination of Gibbs free energy of transfer for some univalent ions from water to methanol, acetonitrile, dimethylsulfoxide, pyridine, tetrahydrothiophene and liquid ammonia; standard electrode potentials of some couples in these solvents. Inorg. Chim. Acta 127, 15-24 (1987)

1961. Johnsson, M. & Persson, I. Determination of heats and entropies of transfer for some univalent ions from water to methanol, acetonitrile, dimethylsulfoxide, pyridine and tetrahydrothiophene. Inorg. Chim. Acta 127, 25-34 (1987)

1962. Feakins, D., McCarthy, P.J. & Clune, T.A. Thermodynamics of ion solvation in mixed aqueous solvents. Part 1. Some free-energies of transfer of hydrochloric-acid, alkali-metal and alkaline-earth-metal chlorides and potassium halides in the trans-butyl alcohol water-system at 25%°C. J. Chem. Soc. Faraday Trans. I 84, 4213-4218 (1988)

1963. Hefter, G.T. & McLay, P.J. The solvation of fluoride ions. I. Free energies for transfer from water to aqueous alcohol and acetonitrile mixtures. J. Solut. Chem. 17, 535-546 (1988)

1964. Kondo, Y., Uematsu, R., Nakamura, Y. & Kusabayashi, S. Empirical analysis on the constituent terms of transfer enthalpies. J. Chem. Soc. Faraday Trans. 1 84, 111-116 (1988)

1965. Sidahmed, I.M. & Wells, C.F. Ionic solvation in water-cosolvent mixtures. Part 15. Free energies of transfer of single ions from water into water-dimethylformamide mixtures. J. Chem. Soc. Faraday Trans. 1 84, 1153-1162 (1988)

1966. Tissier, C. Alkaline earth ions in methanol and water+methanol mixtures. 2. Single-ion Gibbs free energies of transfer. Bull. Soc. Chim. Franc. 5, 787-792 (1988)

1967. Wells, C.F. Ionic solvation in water + co-solvent mixtures. Part 17. The “neutral” component of free energies of transfer of single ions from water into water + ethanol mixtures. Thermochimica Acta 132, 141-154 (1988)

1968. Bhattacharyya, A.K. & Lahiri, S.C. Determination of the free energy of solvation of ferrous ion in water and free energies of transfer of ferrous ion from water to ethanol-water mixtures. Thermochimica Acta 127, 119-124 (1988)

1969. Feakins, D., Hickey, B.E., Knox, M., McCarthy, P.J., Waghorne, E. & Clune, T.A. Thermodynamics of ion solvation in mixed aqueous solvents. Part 2. Effect of steric hindrance on free energies of transfer of cations: Correlations with structural determinations. J. Chem. Soc. Faraday Trans. I 84, 4219-4233 (1988)

1970. Wells, C.F. Ionic solvation in water + co-solvent mixtures. Part 16. Free energies of transfer of large single ions with the “neutral” component removed from water into water + ethanol mixtures. Thermochimica Acta 130, 127-139 (1988)

1971. Gomaa, E.A. Free energies of transfer for some monovalent ions and Ph4SbBPh4 from water to acetonitrile and acetonitrile-water mixtures using the asymmetric Ph4AsBPh4 assumption. Thermochimica Acta 152, 371-379 (1989)

1972. Miyaji, K., Nozawa, K. & Morinaga, K. Preferential solvation of Ni(II) and Mg(II) ions in water-acetonitrile mixtures. Enthalpies of transfer and the electronic spectra. Bull. Chem. Soc. Jpn. 62, 1472-1476 (1989)

1973. Feakins, D., Johnson, K.F. & Waghorne, W.E. Thermodynamics of ion solvation in mixed aqueous solvents. 3. Effect of steric hindrance on the free-energies of transfer of cations to 5% and 20% (w/w) propan-1-ol-water mixtures. Proc. Roy. Irish Acad. B 89, 321-327 (1989)

1974. Gomaa, E.A. Transfer free energies of ions from water to N,N-dimethylformamide and its aqueous mixtures, based on Ph4AsBPh4 and Ph4SbBPh4 assumptions. Thermochimica Acta 142, 19-27 (1989)

1975. Halawani, K.H.M. & Wells, C.F. Ionic solvation in water + co-solvent mixtures. Part 19. Free energies of transfer of single ions from water into mixtures of water with polyhydroxy compounds: An examination of the assumptions used in determining Δ G°(i). Thermochimica Acta 155, 57-76 (1989)

1976. Halawani, K.H. & Wells, C.F. Ionic solvation in water-co-solvent mixtures. Part 18. Free energies of transfer of single ions from water into water-2-methoxyethanol mixtures. J. Chem. Soc. Faraday Trans. I 85, 2185-2197 (1989)

1977. Piekarska, A. & Taniewska-Osińska, S. Single-ion transfer enthalpies for Ph4P+=BPh4-, Na+ and I- ions in methanol-N,N-dimethylformamide mixtures. Thermochimica Acta 170, 189-195 (1990)

1978. Saxton, J. & Wells, C.F. Ionic solvation in water-co-solvent mixtures. Part 21. - Free energies of transfer of single ions from water into water-2-ethoxyethanol mixtures. J. Chem. Soc. Faraday Trans. 86, 1471-1475 (1990)

1979. Wells, C.F. Ionic solvation in water + co-solvent mixtures. Part 20. The “neutral” component of free energies of transfer of single ions from water into mixtures of water + hydroxylic co-solvents. Thermochimica Acta 161, 223-237 (1990)

1980. Marcus, Y. Thermodynamic functions of transfer of single ions from water to non-aqueous and mixed solvents (based on an extrathermodynamic assumption): Part 5. Gibbs energies of transfer into aqueous alcohols. Pure Appl. Chem. 62, 899-940 (1990)

1981. Coetzee, J.F, Dollard, W.J. & Istone, W.K. Measurement of real free energies of transfer of individual ions from water to other solvents with the jet cell. J. Solut. Chem. 20, 957-975 (1991)

1982. Elsemongy, M.M. & Abdel-Khalek, A.A. Gibbs free energies of transfer of individual ions from water into water-urea mixtures. Thermochimica Acta 181, 95-107 (1991)

1983. Feakins, D., Mullally, J. & Waghorne, W.E. Enthalpies of transfer of tetrabutylammonium bromide as indicators of the structure of aqueous solvents: Aqueous methanol, ethanol, propan-1-ol, 2-methylpropan-2-ol and 1,4-dioxane systems. J. Chem. Soc. Faraday Trans. 87, 87-91 (1991)

1984. Jóźwiak, M., Nowicka, B. & Taniewska-Osińska, S. Enthalpies of transfer of several ions from water to water-n-propanol mixtures at 298.15 K. Thermochimica Acta 190, 319-323 (1991)

1985. El-Subruiti, G.M.A., Wells, C.F. & Sidahmed, I.M. Solubility of dichlorotetraalkylpyridinecobalt III hexachlororhenate(IV) in water + methanol mixtures: Free energies of transfer of the complex cation from water into the mixtures. J. Solut. Chem. 20, 403-415 (1991)

1986. Halawani, K.H.M. & Wells, C.F. Ionic solvation in water + co-solvent mixtures. Part 23. Free energies of transfer of single ions from water into water + diethylene glycol mixtures. Thermochimica Acta 191, 121-130 (1991)

1987. Wells, C.F. Ionic solvation in water + co-solvent mixtures. Part 22. Free energies of transfer of complex ions from water into water + methanol mixtures. Thermochimica Acta 185, 183-203 (1991)

1988. Shao, Y., Stewart, A.A. & Girault, H.H. Determination of the half-wave potential of the species limiting the potential window. J. Chem. Soc. Faraday Trans. 87, 2593-2597 (1991)

1989. Gritzner, G. & Lewandowski, A. Temperature coefficients of half-wave potentials and entropies of transfer of cations in aprotic solvents. J. Chem. Soc. Faraday Trans. 87, 2599-2602 (1991)

1990. Gritzner, G. & Hörzenberger, F. Gibbs energies, enthalpies and entropies of transfer of cations from acetonitrile and N,N-dimethylformamide into water. J. Chem. Soc. Faraday Trans. 88, 3013-3017 (1992)

1991. Pietrzak, A. & Taniewska-Osińska, S. Single-ion transfer enthalpies in methanol-acetonitrile mixtures at 298.15 K based on the Ph4P+=BPh4- assumption. Thermochimica Acta 194, 109-116 (1992)

1992. Taniewska-Osińska, S., Nowicka, B. & Pietrzak, A. Correlation of transfer enthalpies of Ph4PCl from water to water-organic mixtures with parameters describing organic cosolvent properties. Thermochimica Acta 196, 125-129 (1992)

1993. Wells, C.F. Ionic solvation in water + co-solvent mixtures. Part 24. Free energies of transfer of single ions from water into water + 1,2-dimethoxyethane mixtures. Thermochimica Acta 208, 323-339 (1992)

1994. Hakin, A.W. & Beswick, C.L. Single-ion enthalpies and entropies of transfer from water to aqueous urea solutions at 298.15 K. Can. J. Chem. 70, 1666-1670 (1992)

1995. Hörzenberger, F. & Gritzner, G. Temperature coefficients of half-wave potentials and entropies of transfer of cations in aprotic solvents. J. Chem. Soc. Faraday Trans. 88, 695-697 (1992)

1996. Lewandowski, A. & Gritzner, G. Temperature coefficients of Cu|Cu2+ and Hg|Hg2+ electrode potentials and Gibbs energies, entropies and enthalpies of transfer for Cu2+ and Hg2+. J. Chem. Soc. Faraday Trans. 89, 3553-3556 (1993)

1997. Feakins, D., Mullally, J. & Waghorne, W.E. Enthalpies of transfer of sodium and potassium-chlorides from water to aqueous 1,4-dioxane mixtures at 25°C. J. Solut. Chem. 22, 311-319 (1993)

1998. Hörzenberger, F. & Gritzner, G. Gibbs energies, entropies and enthalpies of transfer for monovalent cations from acetonitrile to several ions. J. Chem. Soc. Faraday Trans. 89, 3557-3564 (1993)

1999. Taniewska-Osińska, S., Nowicka, B., Pietrzak, A., Romanowski, S. & Pietrzak, T.M. Enthalpies of transfer of selected ions from water to water-propan-2-ol mixtures. Some quantum chemical aspects of the ionic solvation. Thermochimica Acta 225, 9-16 (1993)

2000. Gritzner, G. & Lewandowski, A. Temperature coefficients of electrode potentials and Gibbs energies, entropies and enthalpies of transfer of Ag+, Na+ and Tl+ from N,N-dimethylformamide to its mixtures with N,N-dimethylthioformamide and with water. J. Chem. Soc. Faraday Trans. 89, 2007-2010 (1993)

2001. Majumdar, K., Lahiri, S.C. & Mukherjee, D.C. Thermodynamics of transfer of hydrogen ion from water to dioxane-water mixtures. J. Ind. Chem. Soc. 70, 365-374 (1993)

2002. Kondo, Y., Nonaka, O., Iwasaki, K., Kuwamoto, T. & Takagi, T. Single-ion enthalpies of transfer for conjugate-base anions of imides in acetonitrile-methanol mixtures. J. Chem. Soc. Faraday Trans. 90, 121-125 (1994)

2003. Mount, L.A. & Wells, C.F. Ionic solvation in water + cosolvent mixtures. Part 25. Gibbs free energies of transfer of single ions from water into water + sulpholane mixtures. Thermochimica Acta 237, 55-71 (1994)

2004. Piekarska, A. Ion solvation in methanol-organic cosolvent mixtures. Part 5. Enthalpies of transfer of inorganic ions in mixtures of methanol and propylene carbonate at 298.15 K. Thermochimica Acta 244, 61-67 (1994)

2005. Kundu, K.K. Transfer entropies and structuredness of solvents. Pure Appl. Chem. 66, 411-417 (1994)

2006. Gritzner, G. & Hörzenberger, F. Gibbs energies, enthalpies and entropies of transfer for divalent cations to several solvents. J. Chem. Soc. Faraday Trans. 91, 3843-3850 (1995)

2007. Koidel, M. & Ishiguro, S.-I. Molar enthalpies of transfer of divalent transition metal ions and their chloro complexes from N,N-dimethylformamide to N,N-dimethylacetamide. J. Solut. Chem. 24, 511-522 (1995)

2008. Marcus, Y. Transfer Gibbs free energies of divalent anions from water to organic and mixed aqueous-organic solvents. Z. Naturforsch. A 50, 51-58 (1995)

2009. Wells, C.F. Equilibria involving protons in mixtures of water with propane-1,2-diol. Gibbs energies of transfer of protons and other ions from water into the mixture. J. Chem. Soc. Faraday Trans. 93, 273-277 (1997)

2010. Katsuta, S., Takagi, C., Tanaka, M., Fukada, N. & Takeda, Y. Stabilities in water and Gibbs free energies of transfer from water to nonaqueous solvents of alkali metal ion complexes with 1,2-bis[2-(2-methoxyethoxy)ethoxy]benzene(acyclic polyether). J. Chem. Soc. Faraday Trans. 94, 365-368 (1998)

2011. Kalidas, C., Hefter, G. & Marcus, Y. Gibbs energy transfer of cations from water to mixed aqueous organic solvents. Chem. Rev. 100, 819-852 (2000)

2012. Wells, C.F. Ions in aqueous acetic acid mixtures: Solvent reorganization around protons and Gibbs energies of transfer from water. J. Solut. Chem. 29, 271-287 (2000)

2013. Mandal, R. & Lahiri, S.C. Gibbs energies of transfer of hydrogen ion from water to tetrahydrofuran + water mixtures and basicity and structuredness of aquo-ethers. Z. Phys. Chem. 214, 1-13 (2000)

2014. Hefter, G., Marcus, Y. & Waghorne, W.E. Enthalpies and entropies of transfer of electrolytes and ions from water to mixed aqueous organic solvents. Chem. Rev. 102, 2773-2836 (2002)

2015. Goldie, R., Luck, D. & Wells, C.F. Gibbs energies of transfer of the proton from water into mixtures of water with chain multiple ethers: Equilibria involving changes of solvation of the proton. Phys. Chem. Chem. Phys. 5, 896-901 (2003)

2016. Hora, J., McCarthy, R. & Waghorne, W.E. Enthalpies of transfer of the CH2 moiety into aqueous acetonitrile mixtures; comparison of values from n-alcohols and tetraalkylammonium ions; effect of temperature variation. J. Chem. Thermodyn. 37, 83-88 (2004)

2017. Kamieńska-Piotrowicz, E. Analysis of the enthalpies of transfer of Co(II) ion in mixed solvents by means of the theory of preferential solvation. Thermochimica Acta 427, 1-7 (2005)

2018. Sokolov, V.N., Kobenin, V.A. & Gorelov, V.N. The entropies of solvation and transfer of ions in the water-ethanol binary system at 298.15 K. Russ. J. Phys. Chem. 79, 168-172 (2005)

2019. Marcus, Y. Gibbs energies of transfer of anions from water to mixed aqueous organic solvents. Chem. Rev. 107, 3880-3897 (2007)

2020. Gschneidner, K.A. Physical properties and interrelationships of metallic and semimetallic elements. Solid State Phys. - Adv. Res. Appl. 16, 275-426 (1964)

2021. Ho, C.Y. & Taylor, R.E. Thermal expansion of solids. ASM International, USA (1998)

2022. Kaye, G.W.C. & Laby, T.H. Tables of Physical, Chemical Constants. 3.1.2 Properties of the elements. Kaye, Laby Online. Version 1.0. Available at: www.kayelaby.npl.co.uk (2005)

2023. Kaye, G.W.C. & Laby, T.H. Tables of Physical, Chemical Constants. 2.3.5 Thermal Expansion. Kaye, Laby Online. Version 1.0. Available at: www.kayelaby.npl.co.uk (2005)

2024. Richards, T.W. The compressibilities of the elements and their relations to other properties. Proc. Natl. Acad. Sci. USA 1, 411-415 (1915)

2025. Petit, A.-T. & Dulong, P.-L. Recherches sur quelques points importants de la théorie de la chaleur. Ann. Chim. Phys. 10, 395-413 (1819)

2026. Fox, R. The background to the discovery of Dulong and Petit's law. Brit. J. Hist. Sci. 4, 1-22 (1968)

2027. Simon, J.D. & McQuarrie, D.A. Molecular thermodynamics. Edition 1. University Science Books, Sausalito, California, USA (1999)

2028. Rossiter, B.W. & Baetzold, R.C. Physical methods of chemistry. Determination of elastic and mechanical properties. Volume 7. Edition 2. Wiley-Interscience, New York, USA (1991)

2029. Håkansson, B. & Ross, R.G. Thermal conductivity and heat capacity of solid LiBr and RbF under pressure. J. Phys.: Condens. Matter 1, 3977-3985 (1989)

2030. Roberts, R.W., Ultrasonic parameters in the Born model of the rubidium halides. J. Phys. Chem. Solids 31, 2397-2400 (1970)

2031. Kelley, K.K. Contributions to the data on theoretical metallurgy. X. High-temperature heat content, heat capacity, and entropy. Data for inorganic compounds. Volume 476. US Bureau of Mines Bulletin (1949)

2032. Dworkin, A.S. & Bredig, M.A. The heat of fusion of the alkali metal halides. J. Phys. Chem. 64, 269-272 (1960)

2033. Luce, R.G. & Trischka, J.W. Molecular constants of cesium chloride by the molecular beam electric resonance method. J. Chem. Phys. 21, 105-109 (1952)

2034. Rusk, J.R. & Gordy, W. Millimeter wave molecular beam spectroscopy: Alkali bromides and iodides. Phys. Rev. 127, 817-831 (1962)

2035. Veazey, S.E. & Gordy, W. Millimeter-wave molecular beam spectroscopy: Alkali fluorides. Phys. Rev. 138, 1303-1313 (1965)

2036. Pearson, E.F. & Gordy, W. Millimeter- and submillimeter-wave spectra and molecular constants of LiF and LiCl. Phys. Rev. 177, 52-179 (1969)

2037. Dunham, J.L. The energy levels of a rotating vibrator. Phys. Rev. 41, 721-731 (1932)

2038. Maslen, V.W. Crystal ionic radii. Proc. Phys. Soc. London 91, 259-260 (1967)

2039. Jensen, H. Zur physikalischen Deutung der kristallographischen Ionenradien. Angew. Chem. 52, 583-586 (1939)

2040. Kucharczyk, W. Ionic radii and optical susceptibilities in the halite-type alkali halides. Acta Crystallogr. B 43, 454-456 (1987)

2041. Pauling, L. The influence of relative ionic sizes on the properties of ionic compounds. J. Am. Chem. Soc. 50, 1036-1045 (1928)

2042. Pauling, L. The sizes of ions and their influence on the properties of salt-like compounds. Z. Kristallographie 67, 377-404 (1928)

2043. Holbrook, J.B., Khaled, F.M. & Smith, B.C. Soft-sphere ionic-radii for Group 1 and Group 2 metal halides and ammonium halides. Dalton Trans. 12, 1631-1634 (1978)

2044. Collin, R.J. & Smith, B.C. Ionic radii for Group 1 halide crystals and ion-pairs. Dalton Trans. 4, 702-705 (2005)

2045. Landé, A. Über die Grösse der Atome. Z. Physik 1, 191-197 (1920)

2046. Ahrens, L.H. The use of ionization potentials. Part 1. Ionic radii of the elements. Geochim. Cosmochim. Acta 2, 155-169 (1952)

2047. Pauling, L. The sizes of ions and the structure of ionic crystals. J. Am. Chem. Soc. 49, 765-790 (1927)

2048. Wasastjerna, J.A. On the radii of ions. Soc. Sci. Fenn. Comm. Phys. Math. 38, 1-25 (1923)

2049. Zachariasen, W.H. A set of empirical crystal radii for ions with inert gas configuration. Z. Kristallographie 80, 137-153 (1931)

2050. Thomas, L.H. The calculation of atomic fields. Proc. Cambridge Philos. Soc. 33, 542-548 (1927)

2051. Fermi, E. Statistical methods of investigating electrons in atoms. Z. Phys. 48, 73-79 (1928)

2052. Waddington, T.C. Ionic radii and the method of the undetermined parameter. Trans. Faraday Soc. 62, 1482-1492 (1966)

2053. Johnson, O. Ionic radii for spherical potential ions. I. Inorg. Chem. 12, 780-785 (1973)

2054. Damm, J.Z. & Chvoj, Z. Optimization of Tosi-Fumi ionic radii for F.C.C. alkali halide crystals. Phys. Stat. Sol. B 114, 413-418 (1982)

2055. Yildiran, H., Ayata, S. & Tunçgenç, M. A theoretical study on calculation of ionic radii using limiting equivalent conductivities. Ionics 13, 83-86 (2007)

2056. Goldschmidt, V.M. Geochemische Verteilungsgesetze der Elemente VII: Die Gesetze der Krystallchemie. Skrifter Norske Vidensk. Akad. Oslo 1 Mat.-Nat. Kl. No. 2, 1-117 (1926)

2057. Herz, W. Beziehungen der Schmelzpunktsmolvolumen zu den Ionenradien bei Alkalihaloiden. Z. anorg. allgem. Chem. 184, 303-304 (1929)

2058. Shannon, R.D. & Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925-946 (1969)

2059. Shannon, R.D. & Prewitt, C.T. Revised values of effective ionic radii. Acta. Crystallogr. B 26, 1046-1048 (1970)

2060. Shannon, R.D. Revised values of effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. A 32, 751-767 (1976)

2061. Schoknecht, G. Röntgen-Kristallstrukturanalyse mit Faltungsintegralen. 2. Messverfahren und Bestimmung der Elektronendichte in NaCl. Z. Naturforsch. A 12, 983-996 (1957)

2062. Witte, H. & Wölfel, E. Electron distributions in NaCl, LiF, CaF2, and Al. Rev. Mod. Phys. 30, 51-55 (1958)

2063. Gourary, B.S. & Adrian, F.J. Wave functions for electron-excess color centers in alkali halide crystals. Solid State Phys. 10, 127-247 (1960)

2064. Stockar, K. Zur Kenntnis der Radien positiver Atomionen. Helv. Chim. Acta 33, 1409-1420 (1950)

2065. Rosseinsky, D.R. Ionic radii from a continuum model for alkali-metal halide lattices. J. Chem. Soc. A (4), 608-610 (1971)

2066. Batsanov, S.S. Determination of ionic radii from metal compressibilities. J. Struct. Chem. 45, 896-899 (2004)

2067. Philipps, J.C. Dielectric definition of electronegativity. Phys. Rev. Lett. 20, 550-553 (1968)

2068. Philipps, J.C. & van Vechten, J.A. Dielectric classification of crystal structures, ionization potentials, and band structures. Phys. Rev. Lett. 22, 705-708 (1969)

2069. van Vechten, J.A. Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys. Rev. 182, 891-905 (1969)

2070. Stokes, G.G. On the effect of the internal friction of fluids on the motion of pendulums. Philos. Mag. 1, 337-339 (1851)

2071. Stokes, G.G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Philos. Soc. 9, 8-106 (1856)

2072. Sutherland, W. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Philos. Mag. 9, 781-785 (1905)

2073. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geförderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549-560 (1905)

2074. Nightingale Jr., E.R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63, 1381- (1959)

2075. Vieillard, P. Une nouvelle echelle des rayons ioniques de Pauling. Acta Crystallogr. B 43, 513-517 (1987)

2076. Ignatiev, V.D. Sizes of atoms and ions and covalency of bonding in molecules and crystals. J. Struct. Chem. 46, 744-751 (2005)

2077. Ignatiev, V. Relation between interatomic distances and sizes of ions in molecules and crystals. Acta Crystallogr. B 58, 770-779 (2002)

2078. Ignatiev, V. Interpermeable atoms in homonuclear diatomic molecules. J. Mol. Struct. (Theochem) 819, 102-108 (2007)

2079. Waber, J.T. & Cromer, D.T. Orbital radii of atoms and ions. J. Chem. Phys. 42, 4116-4123 (1965)

2080. Sen, K.D. & Politzer, P. Characteristic features of the electrostatic potentials of singly negative monoatomic ions. J. Chem. Phys. 90, 4370-4372 (1989)

2081. Ghosh, D.C. & Biswas, R. Theoretical calculation of absolute radii of atoms and ions. Part 2. The ionic radii. Int. J. Mol. Sci. 4, 379-407 (2003)

2082. Barrera, M. & Zuloagat, F. Determination of the ionic radii by means of the Kohn-Sham potential: Identification of the chemical potential. Int. J. Quant. Chem. 106, 2044-2053 (2006)

2083. Hirschfelder, J.O., Curtiss, C.F. & Bird, R.B. Molecular theory of gases and liquids. John Wiley & Sons, Inc., New York, USA (1954)

2084. Grant, I.P. Relativistic calculation of atomic structures. Adv. Phys. 19, 747-811 (1970)

2085. Slater, J.C. Atomic radii in crystals. J. Chem. Phys. 41, 3199-3204 (1964)

2086. Liberman, D., Waber, J.T. & Cromer, D.T. Self-consistent-field Dirac-Slater wave functions for atoms and ions. I. Comparison with previous calculations. Phys. Rev. 137, A27-A34 (1965)

2087. Gilbert, T.L. Soft-sphere model for closed-shell atoms and ions. J. Chem. Phys. 49, 2640-2642 (1968)

2088. Barrera, M. & Zuloaga, F. Electronic properties of atoms and covalent radius determined by means of an exchange potential new model containing self interaction and gradient corrections. J. Chilean Chem. Soc. 48, 31-37 (2003)

2089. van Leeuwen, R. & Baerends, E.J. Exchange-correlation potential with correct asymptotic behaviour. Phys. Rev. A 49, 2421-2431 (1994)

2090. Perdew, J.P. & Zunger, A. Self-interaction correction to density functional approximations for many-electron systems. Phys. Rev. B 23, 5048-5079 (1981)

2091. Rittner, E.S. Binding energy and dipole moment of alkali halide molecules. J. Chem. Phys. 19, 1030-1035 (1951)

2092. Brumer, P. & Karplus, M. Perturbation theory and ionic models for alkali-halide systems. 1. Diatomics. J. Chem. Phys. 58, 3903-3918 (1973)

2093. Jia, Y.Q. Crystal radii and effective ionic radii of the rare earth ions. J. Solid State Chem. 95, 184-187 (1991)

2094. Johnson, O. Ionic radii for spherical potential ions. 2. Radii for rare-earth, actinide, transition metal and D10 cations. Chemica Scripta 7, 5-10 (1975)

2095. Goyal, S.C. & Shanker, J. Calculation of ionic radii in silver-halide and alkaline-earth oxide crystals. Current Science 41, 891-891 (1972)

2096. Whittaker, J.W. & Muntus, R. Ionic radii for use in geochemistry. Geochim. Cosmochim. Acta 34, 945-956 (1970)

2097. Boswarva, I.M. Ionic radii in alkaline earth chalcogenides. J. Phys. C: Solid State Physics 1, 582-585 (1968)

2098. Geller, S. & Mitchell, D.W. Rare earth ion radii in the iron garnets. Acta Crystallogr. 12, 936-936 (1959)

2099. Salvi, G.R. & de Bethune, A.J. The temperature coefficients of electrode potentials. 2. The second isothermal temperature coefficient. J. Electrochem. Soc. 108, 672-676 (1961)

2100. Giovanelli, D., Lawrence, N.S. & Compton, R.G. Electrochemistry at high pressures: A review. Electroanalysis 16, 789-810 (2004)

2101. Randall, M. & Rossini, F.D. Heat capacities in aqueous salt solutions. J. Am. Chem. Soc. 51, 323-345 (1929)

2102. Gucker, F.T. & Schminke, K.H. A study of the heat capacity and related thermodynamic properties of aqueous solutions of lithium chloride, hydrochloric acid and potassium hydroxide at 25°C. J. Am. Chem. Soc. 54, 1358-1373 (1932)

2103. Fortier, J.-L., Leduc, P.-A. & Desnoyers, J.E. Thermodynamic properties of alkali halides. II. Enthalpies of dilution and heat capacities in water at 25°C. J. Solut. Chem. 3, 323-349 (1974)

2104. Desnoyers, J.E., de Visser, C., Perron, G. & Picker, P. Reexamination of the heat capacities obtained by flow micrometry. Recommendation for the use of a chemical standard. J. Solut. Chem. 5, 605-616 (1976)

2105. Hedwig, G.R. & Hakin, A.W. Partial molar volumes and heat capacities of single ions in aqueous solution over the temperature range 288.15 to 328.15 K. Phys. Chem. Chem. Phys. 6, 4690-4700 (2004)

2106. Geffcken, W. & Price, D. Zur Frage der Konzentrationsabhängigkeit des scheinbaren Molvolumens und der scheinbaren Molrefraktion in verdünnten Lösungen. Z. Phys. Chem. B 26, 81-99 (1934)

2107. Gibson, R.E. & Loeffler, O.H. Pressure-volume-temperature relations in solutions. IV. The apparent volumes and thermal expansibilities of sodium chloride and sodium bromide in aqueous solutions between 25 and 95°C. J. Am. Chem. Soc. 63, 443-449 (1941)

2108. Owen, B.B. & Brinkley Jr., S.R. Calculation of the effect of pressure upon ionic equilibria in pure water and in salt solutions. Chem. Rev. 29, 461-474 (1941)

2109. MacInnes, D.A. & Dayhoff, M.O. The partial molal volumes of potassium chloride, potassium and sodium iodides and of iodine in aqueous solution at 25°C. J. Am. Chem. Soc. 74, 1017-1020 (1952)

2110. Zen, E.-A. Partial molar volumes of some salts in aqueous solution. Geochim. Cosmochim. Acta 12, 103-122 (1956)

2111. Robertson, R.E., Sugamori, S.E., Tse, R. & Wu, C.-Y. The solvent isotope effect and the partial molar volume of ions. Can. J. Chem. 44, 487-494 (1966)

2112. Vaslow, F. The apparent molal volumes of the alkali metal chlorides in aqueous solution and evidence for salt-induced structure transitions. J. Phys. Chem. 70, 2286-2294 (1966)

2113. Millero, F.J. Apparent molal volumes of sodium fluoride in aqueous solutions at 25°C J. Phys. Chem. 71, 4567-4569 (1967)

2114. Dunn, L.A. Apparent molar volumes of electrolytes. Part 2. Some 1-1 electrolytes in aqueous solution at 25°C. Trans. Farad. Soc. 64, 1898-1903 (1968)

2115. Millero, F.J. The partial molal volumes of tetraphenylarsonium tetraphenylboron in water at infinite dilution. Ionic partial molal volumes. J. Phys. Chem. 75, 280-282 (1971)

2116. Perron, G., Fortier, J.-L. & Desnoyers, J.E. The apparent molar heat capacities and volumes of aqueous NaCl from 0.01 to 3 mol kg-1 in the temperature range 274.65 to 318.15 K. J. Chem. Thermodyn. 7, 1177-1184 (1975)

2117. Desnoyers, J.E. & Arel, M. Apparent molal volumes of n-alkylamine hydrobromides in water at 25°C: Hydrophobic hydration and volume changes. Can. J. Chem. 45, 359-366 (1967)

2118. Millero, F.J. High precision magnetic float densimeter. Rev. Sci. Instrum. 38, 1441-1444 (1967)

2119. Redlich, O. & Rosenfeld, P. Das partielle molare Volumen von gelösten Elektrolyten. I. Z. Phys. Chem. A 155, 65-74 (1931)

2120. Redlich, O. & Rosenfeld, P. Zur Theorie des Molvolumens gelöster Elektrolyte. II. Z. Elektrochem. 37, 705-711 (1931)

2121. Zana, R. & Yeager, E. Determination of ionic partial molal volumes from ionic vibration potentials. J. Phys. Chem. 70, 954-955 (1966)

2122. Zana, R. & Yeager, E. Ultrasonic vibration potentials and their use in the determination of ionic partial molal volumes. J. Phys. Chem. 71, 521-536 (1967)

2123. Garnsey, R., Boe, R.J., Mahoney, R. & Litovitz, T.A. Determination of electrolyte apparent molal compressibilities at infinite dilution using a high-precision ultrasonic velocimeter. J. Chem. Phys. 50, 5222-5228 (1969)

2124. Gucker, F.T. The apparent molal heat capacity, volume, and compressibility of electrolytes. Chem. Rev. 13, 111-130 (1933)

2125. Owen, B.B. & Simons, L. Standard partial molal compressibilities by ultrasonics. I. Sodium chloride and potassium chloride at 25°C. J. Phys. Chem. 61, 479-482 (1957)

2126. Allam, D.S. & Lee, W.H. Ultrasonic studies of electrolyte solutions. Part II. Compressibilities of electrolytes. J. Chem. Soc. A 0, 5-9 (1966)

2127. Mathieson, J.G. & Conway, B.E. Partial molal compressibilities of salts in aqueous solution and assignment of ionic contributions. J. Solut. Chem. 3, 455-477 (1974)

2128. Millero, F.J., Ward, G.K., Lepple, F.K. & Hoff, E.V. Isothermal compressibility of aqueous sodium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate solutions from 0 to 45°C at 1 atm. J. Phys. Chem. 78, 1636-1643 (1974)

2129. Millero, F.J. & Drost-Hansen, W. Apparent molal volumes of aqueous monovalent salt solutions at various temperatures. J. Chem. Engin. Data 13, 330-333 (1968)

2130. Sidgwick, N.V. The chemical elements and their compounds. Volume 1. Oxford Univ. Press, Oxford, UK (1950)

2131. Ralchenko, Y., Kramida, A.E., Reader, J., NIST atomic spectra database version 3.15. Available at: http://physics.nist.gov/asd3 (2008)

2132. Radziemski, L.J. & Kaufman, V. Wavelengths, energy levels, and analysis of neutral atomic chlorine (Cl I). J. Opt. Soc. Am. 59, 424-442 (1969)

2133. Moore, C.E. Atomic energy levels as derived from the analyses of optical spectra. 1H to 23V (Vol I). National Standard Reference Data Series 35, 1-358 (1971)

2134. Moore, C.E. Atomic energy levels as derived from the analyses of optical spectra. 24Cr to 41Nb (Vol II). National Standard Reference Data Series 35, 1-263 (1971)

2135. Moore, C.E. Atomic energy levels as derived from the analyses of optical spectra. 42Mo to 57La, 72Hf to 89Ac (Vol III). National Standard Reference Data Series 35, 1-289 (1971)

2136. Laguna, G.A. & Beattie, W.H. Direct absorption measurement of the spin-orbit splitting of the ground state in atomic fluorine. Chem. Phys. Lett. 88, 439-440 (1982)

2137. Uehara, H. & Horiai, K. Infrared-microwave double resonance of atomic chlorine on laser-magnetic-resonance fine-structure transitions. J. Opt. Soc. Am. B 4, 1217-1221 (1987)

2138. Langmuir, I. Vapor pressure of metallic tungsten. Phys. Rev. 2, 329-342 (1913)

2139. Knudsen, M. Kinetic theory of gases. Methuen, London, UK (1934)

2140. Hertz, H. Über die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann. Phys. 253, 177-193 (1882)

2141. Langmuir, I. Chemical reactions at very low pressures: II. J. Am. Chem. Soc. 35, 931-945 (1913)

2142. Knudsen, M. Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann. Phys. 352, 697-708 (1915)

2143. Smirnov, B.M. Physics of atoms and ions. Edition 1. Springer, New York, USA (2003)

2144. Martin, W.C., Musgrove, A., Kotochigova, S. & Sansonetti, J.E. NIST Ground levels and ionization energies for the neutral atoms. Version 1.3. Available at: http://physics.nist.gov/IonEnergy (2003)

2145. Born, M. & Landé, A. Über die absolute Berechnung der Kristalleigenschaften mit Hilfe bohrscher Atommodelle. Ber. Kgl. Preuss. Akad. Wiss. Berlin 45, 1048-1068 (1918)

2146. Born, M. & Landé, A. Die Abstände der Atome im Molekül und im Kristalle. Naturwiss. 6, 496-496 (1918)

2147. Madelung, E. Das elektrische Feld in Systemen von regelmässig angeordneten Punktladungen. Phys. Z. 19, 524-533 (1919)

2148. Jenkins, H.D.B. Thermodynamics of the relationship between lattice energy and lattice enthalpy. J. Chem. Edu. 82, 950-952 (2005)

2149. Barron, T.H.K., Berg, W.T. & Morrison, J.A. Specific heat of LiCl at low temperatures. Proc. Roy. Soc. London Ser. A 242, 478-492 (1957)

2150. Scales, W.W. Specific heat of LiF and KI at low temperatures. Phys. Rev. 112, 49-54 (1958)

2151. Moyer, D.F. Specific heat of LiCl at low temperatures. J. Phys. Chem. Solids 26, 1459-1462 (1965)

2152. Sharko, A.V. & Botaki, A.A. Debye temperature of alkali halide crystals. Russ. J. Phys. 14, 360-364 (1971)

2153. Jalenti, R. & Caramazza, R. Thermodynamic functions of hydration of alkali metal and halide ions. J. Chem. Soc. Farad. Trans. I 72, 715-722 (1976)

2154. Mayer. J.E., Helmholz, Die Gitterenergie der Alkalihalogenide und die Elektronenaffinität der Halogene. Z. Phys. A 75, 19-29 (1932)

2155. Verwey, E.J.W. Absolute grootte van thermodynamische grootheden voor ionen in waterige oplossing en van den elektrischen potentialsprong aan het vrije oppervlak van water. Chem. Weekblad 36, 530-535 (1940)

2156. Eucken, A. Ionenhydrate in wässriger Lösung. Z. Elektrochem. 52, 6-24 (1948)

2157. Scott, A.F. The apparent volumes of salts in solutions. I. The test of the empirical rule of Masson. J. Phys. Chem. 35, 2315-2329 (1931)

2158. Millero, F.J. The apparent and partial molal volume of aqueous sodium chloride solutions at various temperatures. J. Phys. Chem. 74, 356-362 (1970)

2159. Dack, M.R.J., Bird, K.J. & Parker, A.J. Solvation of ions. XXV. Partial molal volumes of single ions in protic and dipolar aprotic solvents. Aust. J. Chem. 28, 955-963 (1975)

2160. Singh, P.P. Partial molar volumes of some aqueous electrolytes and a transition model. J. Am. Chem. Soc. 100, 681-684 (1978)

2161. Monnin, C. An ion interaction model for the volumetric properties of natural waters: Density of the solution and partial molal volumes of electrolytes to high concentrations at 25°C. Geochim. Cosmochim. Acta 53, 1177-1188 (1989)

2162. Jauch, K. Die spezifische Wärme wässeriger Salzlösungen. Z. Physik 4, 441-447 (1921)

2163. Millero, F.J. The molal volumes of electrolytes. Chem. Rev. 71, 147-176 (1971)

2164. Eastman, D.E. Photoelectric work functions of transition, rare-earth, and noble metals. Phys. Rev. B 2, 1-2 (1970)

2165. Shan, B. & Cho, K.J. First principles study of work functions of single wall carbon nanotubes. Phys. Rev. Lett. 94, 236602/1-236602/4 (2005)

2166. Su, W.S., Leung, T.C. & Chan, C.T. Work function of single-walled and multiwalled carbon nanotubes: First-principles study. Phys. Rev. B 76, 235413/1-235413/8 (2007)

2167. Lohmann, Z. Fermi-Niveau und Flachbandpotential von Molekülkristallen aromatischer Kohlenwasserstoffe. Z. Naturforsch. A 22, 843-844 (1967)

2168. Gurevich, Y.Y., Determination of the electrochemical potential and reorganization energy in a solution containing a redox system. Elektrokhimiya 18, 1315-1320 (1982)

2169. Frumkin, A.N., Petrii, O.A. & Damaskin, B. Notion of electrode charge and Lippmann equation. J. Electroanal. Chem. 27, 81-100 (1970)

2170. Frumkin, A.N. & Petrii, O.A. Potentials of zero total and zero free charge of platinum group metals. Electrochim. Acta 20, 347-359 (1975)

2171. Frumkin, A.N., Petrii, O.A. & Kolotyrkinasafonova, T.Y. Effect of solution pH on state of platinized platinum-electrode. Dokl. Akad. Nauk. SSSR 222, 1159-1162 (1975)

2172. Latimer, W.M. The energy of solution of gaseous ions in relation to the effect of a charge upon the dielectric. J. Chem. Phys. 48, 1234-1239 (1926)

2173. Garrison, A. A determination of absolute single electrode potentials. J. Am. Chem. Soc. 45, 37-44 (1923)

2174. Randles, J.E.B. & Schiffrin, D.J. The temperature-dependence of the surface potential of aqueous electrolytes. J. Electroanal. Chem. 10, 480-484 (1965)

2175. Rossini, F.D., Wagman, D.D., Evans, S.L. & Jaffe, I. Selected values of chemical thermodynamic properties. Circular of the National Bureau of Standards 500. US Government Printing Office, Washington D.C., USA (1952)

2176. Moore, C.E. Atomic energy levels (hydrogen through vanadium). Circular of the National Bureau of Standards 467. Volume 1. US Government Printing Office, Washington D.C., USA (1949)

2177. Moore, C.E. Atomic energy levels (chromium through niobium). Circular of the National Bureau of Standards 467. Volume 2. US Government Printing Office, Washington D.C., USA (1952)

2178. Moore, C.E. Atomic energy levels (molybdenum through lanthanum and hafnium through actinium). Circular of the National Bureau of Standards 467. Volume 3. US Government Printing Office, Washington D.C., USA (1958)

2179. Stull, D.R. & Prophet, H. JANAF thermochemical tables (2nd ed.; Supplements in 1974, 1975, 1978). National Standard Reference Data Series 37, 1-1141 (1971)

2180. CODATA recommended key values for thermodynamics 1977. CODATA Bulletin 28, 1-17 (1978)

2181. Lide, D.R. CRC Handbook of Chemistry and Physics. Edition 80. CRC Press, Boca Raton, Florida (1999)

2182. Blandamer, M.J. & Symons, M.C. Significance of new values for ionic radii to solvation phenomena in aqueous solution. J. Phys. Chem. 67, 1304-1306 (1963)

2183. Jenkins, H.D.B. & Pritchett, M.S.F. A new approach to the analysis of absolute free energies, enthalpies and entropies of hydration of individual gaseous ions and absolute single-ion viscosity B-coefficients. J. Chem. Soc. Faraday Trans. 1 80, 721-737 (1984)

2184. Fawcett, W.R. The solvent dependence of ionic properties in solution in the limit of infinite dilution. Mol. Phys. 95, 507-514 (1998)

2185. Marcus, Y. The thermodynamics of solvation of ions. Part 2. The enthalpy of hydration at 298.15 K. J. Chem. Soc. Farad. Trans. I 83, 339-349 (1987)

2186. Marcus, Y. Thermodynamics of ion hydration and its interpretation in terms of a common model. Pure Appl. Chem. 59, 1093-1101 (1987)

2187. Marcus, Y. The thermodynamics of solvation of ions. Part 4. Application of the tetraphenylarsonium tetraphenylborate (TATB) assumption to the hydration of ions and to properties of hydrated ions. J. Chem. Soc. Farad. Trans. I 83, 2985-2992 (1987)

2188. Coulter, L.V. The thermochemistry of the alkali and alkaline earth metals and halides in liquid ammonia at -33°. J. Phys. Chem. 57, 553-558 (1953)

2189. Frank, H.S. & Evans, M.W. Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molar entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507-532 (1945)

2190. Bhattacharyya, M.M. Partitioning of entropy of solvation: Single-ion entropy of solvation in aqueous and non-aqueous solvents and the correlation of electrostatic entropy of solvation with electrostriction viscosity B and NMR B' coefficients. J. Chem. Soc. Farad. Trans. 91, 3373-3378 (1995)

2191. Verwey, E.J.W. & de Boer, J.H. Molecular energy of alkali halides. Rec. Trav. Chim. Pays-Bas 55, 431-443 (1936)

2192. Latimer, W.M. & Buffington, R.M. The entropy of aqueous ions. J. Am. Chem. Soc. 48, 2297-2305 (1926)

2193. Ulich, H. Ionenentropie und Solvatation. Z. Elektrochem. 36, 497-506 (1930)

2194. Latimer, W.M., Schutz, P.W. & Hicks Jr., J.F.G. A summary of the entropies of aqueous ions. J. Chem. Phys. 2, 82-84 (1934)

2195. Latimer, W.M., Pitzer, K.S. & Smith, W.V. The entropies of aqueous ions. J. Am. Chem. Soc. 60, 1829-1831 (1938)

2196. Criss, C.M. & Cobble, J.W. The thermodynamic properties of high temperature aqueous solutions. V. The calculation of ionic heat capacities up to 200°. Entropies and heat capacities above 200°. J. Am. Chem. Soc. 86, 5390-5393 (1964)

2197. Franks, F. & Reid, D.S. Ionic solvation entropies in mixed aqueous solvents. J. Phys. Chem. 73, 3152-3154 (1969)

2198. Eastman, E.D. Electromotive force of the electrolytic thermocouples and thermocells and the entropy of transfer and absolute entropy of ions. J. Am. Chem. Soc. 50, 292-297 (1928)

2199. Bernhardt, H.A. & Crockford, H.D. The determination of the entropy of the chloride ion. J. Phys. Chem. 46, 473-476 (1942)

2200. Crockford, H.D. & Hall, J.L. The entropy of the chloride ion at 12.5°C. J. Phys. Chem. 54, 731-734 (1950)

2201. Jolicoeur, C. & Mercier, J.C. An ionic scale for the partial molal heat capacities of aqueous electrolytes from chemical models. J. Phys. Chem. 81, 1119-1121 (1977)

2202. Abraham, M.H. & Marcus, Y. The thermodynamics of solvation of ions. Part 1. - The heat capacity of hydration at 298.15 K. J. Chem. Soc. Faraday Trans. I 82, 3255-3274 (1986)

2203. Shin, C., Worley, I. & Criss, C.M. Partial molal heat capacities of aqueous tetraalkylammonium bromides as functions of temperature. J. Solut. Chem. 5, 867-879 (1980)

2204. French, R.N. & Criss, C.M. Effect of charge on the standard partial molar volumes and heat capacities of organic electrolytes in methanol and water. J. Solut. Chem. 11, 625-648 (1982)

2205. Fajans, K. & Johnson, O. Apparent volumes of individual ions in aqueous solution. J. Am. Chem. Soc. 64, 668-678 (1942)

2206. Couture, A.M. & Laidler, K.J. The partial molal volumes of ions in aqueous solution. I. Dependence on charge and radius. Can. J. Chem. 34, 1209-1216 (1956)

2207. Stokes, R.H. & Robinson, R.A. The application of volume fraction statistics to the calculation of activities of hydrated electrolytes. Trans. Faraday Soc. 53, 301-304 (1957)

2208. Mukerjee, P. On ion-solvent interactions. Part II. Internal pressure and electrostriction of aqueous solutions of electrolytes. J. Phys. Chem. 65, 744-746 (1961)

2209. Padova, J. Solvation approach to ion-solvent interaction. J. Chem. Phys. 40, 691-694 (1964)

2210. Millero, F.J. & Drost-Hansen, W. Apparent molal volumes of ammonium chloride and some symmetrical tetraalkylammonium chlorides at various temperatures. J. Phys. Chem. 72, 1758-1763 (1968)

2211. Jákli, G. Evaluation of individual ionic partial molar volumes in aqueous solutions. J. Chem. Thermodyn. 40, 770-776 (2008)

2212. Glueckauf, E. Molar volumes of ions. Trans. Faraday Soc. 61, 914-921 (1965)

2213. Conway, B.E., Verrall, R.E. & Desnoyers, J.E. Partial molal volumes of tetraalkylammonium halides and assignment of individual ionic contributions. Trans. Faraday Soc. 62, 2738-2749 (1966)

2214. Glueckauf, E. Molar volumes of ions. Trans. Faraday Soc. 64, 2423-2432 (1968)

2215. Krumgalz, B.S. Ionic limiting partial molal volumes in various solvents. J. Chem. Soc. Faraday I 76, 1887-1904 (1980)

2216. Laliberté, L.H. & Conway, B.E. Solute and solvent structure effects in volumes and compressibilities of organic ions in solution. J. Phys. Chem. 74, 4116-4125 (1970)

2217. Millero, F.J. Apparent molal expansibilities of some divalent chlorides in aqueous solution at 25°C. J. Phys. Chem. 72, 4589-4593 (1968)

2218. Millero, F.J. The partial molal volumes of electrolytes in aqueous solutions. In: Water and aqueous solutions: Structure, thermodynamics, and transport processes. Horne, R.A., Ed. Wiley-Interscience, New York, USA, pp 519-595 (1972)

2219. de Ligny, C.L., Alfenaar, M. & van der Veen, N.G. The standard chemical free enthalpy, enthalpy, entropy and heat capacity of hydration of the hydrogen ion, and the surface potential of water at 25° C. Rec. Trav. Chim. Pays-Bas 87, 585-598 (1968)

2220. Zhou, Y., Stell, G. & Friedman, H.L. Note on the standard free energy of transfer and partitioning of ionic species between two fluid phases. J. Chem. Phys. 89, 3836-3839 (1988)

2221. Pratt, L.R. Contact potentials of solution interfaces: Phase equilibrium and interfacial electric fields. J. Phys. Chem. 96, 25-33 (1992)

2222. Frumkin, A.N. Note on B. Kamienski's paper “The nature of the electric potential at the free surface of aqueous solutions”. Electrochim. Acta 2, 351-354 (1960)

2223. Jakuszewski, B., Partyka, S. & Przasnyski, M. Zero charge potentials of mercury in ethanol-water mixtures. Rocz. Chém. 46, 921-927 (1972)

2224. Kochurova, N.N. & Rusanov, A.I. Dynamic surface properties of water: Surface tension and surface potential. J. Colloid. Interface Sci. 81, 297-303 (1981)

2225. Chalmers, M.A. & Pasquille, F. The potential difference at an air-water interface. Philos. Mag. 23, 88-96 (1937)

2226. Frumkin, A.N. Calculation of the absolute potential of the normal calomel electrode from the free energy of hydration of gaseous ions. J. Chem. Phys. 7, 552-553 (1939)

2227. Croxton, C.A. Molecular orientation and interfacial properties of liquid water. Physica A 106, 239-259 (1981)

2228. Izmailov, N.A. A new method of determining energy and solvation heat of individual ions. Dokl. Akad. Nauk. SSSR 149, 884-887 (1963)

2229. Conway, B.E. & Barradas R.G., Eds. Chemical physics of ionic solutions. Wiley, New York, USA (1966)

2230. Conway, B.E.; ed. Bockris, J.O'M., Conway, Modern aspects of electrochemistry. Volume 3. Butterworths Scientific Publications Ltd., London, UK (1964)

2231. Parfenyuk, V.I. & Chankina, T.I. Estimation of ion contribution to the value of the surface potential of organic solvents. Zh. Fiz. Khim. 71, 547-550 (1997)

2232. Buch, V., Milet, A., Vácha, R., Jungwirth, P. & Devlin, J.P. Water surface is acidic. Proc. Natl. Acad. Sci. USA 104, 7342-7347 (2007)

2233. Vácha, R., Buch, V., Milet, A. & Jungwirth, P. Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic? Phys. Chem. Chem. Phys. 9, 4736-4747 (2007)

2234. Iuchi, S., Chen, H., Paesani, F. & Voth, G.A. Hydrated excess proton at water-hydrophobic interfaces. J. Phys. Chem. B 113, 4017-4030 (2009)

2235. Mundy, C.J., Kuo, I.-F.W., Tuckerman, M.E., Lee, H.-S. & Tobias, D.J. Hydroxide anion at the air-water interface. Chem. Phys. Lett. 481, 2-8 (2009)

2236. Petersen, P.B. & Saykally, R.J. Is the liquid water surface basic or acidic? Macroscopic vs. molecular-scale investigations. Chem. Phys. Lett. 458, 255-261 (2008)

2237. Zimmermann, R., Freudenberg, U., Schweiss, R., Küttner, D. & Werner, C. Hydroxide and hydronium ion adsorption. A survey. Curr. Opin. Coll. Interface Sci. 15, 196-202 (2010)

2238. Winter, B., Faubel, M., Vácha, R. & Jungwirth, P. Reply to comments on “Behavior of hydroxide at the water/vapor interface” [Chem. Phys. Lett. 474 (2009) 241]. Chem. Phys. Lett. 481, 19-21 (2009)

2239. Winter, B., Faubel, M., Vácha, R. & Jungwirth, P. Behavior of hydroxide at the water/vapor interface. Chem. Phys. Lett. 481, 241-247 (2009)

2240. Wick, C.D. & Dang, L.X. The behavior of NaOH at the air-water interface: A computational study. J. Chem. Phys. 133, 024705/1-024705/8 (2010)

2241. Beattie, J.K. Comment on “Behavior of hydroxide at the water/vapor interface” [Chem. Phys. Lett. 474 (2009) 241]. Chem. Phys. Lett. 481, 17-18 (2009)

2242. Beattie, J.K., Djerdjev, A.M. & Warr, G.G. The surface of neat water is basic. Faraday Discuss. 141, 31-39 (2009)

2243. Gray-Weale, A. Comment on “Behavior of hydroxide at the water/vapor interface” [Chem. Phys. Lett. 474 (2009) 241]. Chem. Phys. Lett. 481, 22-24 (2009)

2244. Gray-Weale, A. & Beattie, J.K. An explanation for the charge on water's surface. Phys. Chem. Chem. Phys. 11, 10994-11005 (2009)

2245. Enami, S., Hoffmann, M.R. & Colussi, A.J. Proton availability at the air/water interface. J. Phys. Chem. Lett. 1, 1599-1604 (2010)

2246. Fawcett, W.R. Acidity and basicity scales for polar solvents. J. Phys. Chem. 97, 9540-9546 (1993)

2247. Marcus, Y., Hefter, G. & Chen, T. Application of the tetraphenylarsonium tetraphenylborate (TATB) assumption to the hydration entropies of ions. J. Chem. Thermodyn. 32, 639-649 (2000)

2248. Pliego, J.R. & Riveros, J.M. New values for the absolute solvation free energy of univalent ions in aqueous solution. Chem. Phys. Lett. 332, 597-602 (2000)

2249. Fawcett, W.R. & Blum, L. The role of dipole-dipole interactions in the solvation of monoatomic monovalent ions in water on the basis of the mean spherical approximation. J. Electroanal. Chem. 355, 253-263 (1993)

2250. Florián, J. & Warshel, A. Calculations of hydration entropies of hydrophobic, polar, and ionic solutes in the framework of the Langevin dipoles solvation model. J. Phys. Chem. B 103, 10282-10288 (1999)

2251. Blum, L. & Fawcett, W.R. Application of the mean spherical approximation to describe the Gibbs solvation energies of monovalent monoatomic ions in polar solvents. J. Phys. Chem. 96, 408-414 (1992)

2252. Fawcett, W.R. & Blum, L. Application of the mean spherical approximation to describe the entropy of solvation of spherical ions in polar solvents. J. Chem. Soc. Farad. Trans. 88, 3339-3344 (1992)

2253. Azzam, A.M. Studies on ionic solvation. Part III. New theory for calculating heats of hydration of monovalent ions at 25°C. Can. J. Chem. 38, 2203-2216 (1960)

2254. Azzam, A.M. Über eine neue Theorie zur Berechnung der Ionensolvatation. Z. Elektrochem. 58, 889-899 (1954)

2255. Pauling, L. The nature of the chemical bond and the structure of molecules and crystals. Edition 1. Cornell University Press, Ithaca NY, USA (1940)

2256. Saluja, P.P.S Environment of ions in aqueous solutions. In: International review of science. Electrochemistry. Volume 6. Butterworths, London, UK, pp 1-51 (1976)

2257. Parsons, R. The single electrode potential: Its significance and calculation. In: Standard potentials in aqueous solution. Bard, A.J., Parsons, R. & Jordan, J., Eds. Dekker, New York, USA, pp 13-38 (1985)

2258. Lister, M.W., Nyburg, S.C. & Poyntz, R.B. Absolute enthalpy of hydration of the proton using data for doubly-charged complex ions. J. Chem. Soc. Farad. Trans. I 70, 685-693 (1974)

2259. Tuttle Jr., T.R., Malaxos, S. & Coe, J.V. A new cluster pair method of determining absolute single ion solvation free energies demonstrated in water and applied to ammonia. J. Phys. Chem. A 106, 925-932 (2002)

2260. Lee, N., Keesee, R.G. & Castelman Jr., A.W. On the correlation of the total and partial enthalpies of ion solvation and the relationship to the energy barrier of nucleation. J. Colloid. Interface Sci. 75, 555-565 (1980)

2261. Krestov, G.A. Thermodynamics of solvation: Solution and dissolution, ions and solvents, structure and energetics. Ellis Horwood, New York, US (1991)

2262. Lin, J. & Breck, W.G. Entropy differences for some related pairs of complex ions. Can. J. Chem. 43, 766-771 (1965)

2263. Jones, G. & Dole, M. The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950-2964 (1929)

2264. Cox, W.M. & Wolfenden, J.H. The viscosity of strong electrolytes measured by a differential method. Proc. Roy. Soc. Lond. A 145, 475-488 (1934)

2265. Lange, E. & Hesse, T. Experimenteller Nachweis von Überführungswärmen in elektrolytischen Peltier-Wärmen. Z. Elektrochem. 39, 374-384 (1933)

2266. Young, M.B. Thesis. University of California. (1935)

2267. Goodrich, J.C., Goyan, F.M., Morse, E.E., Preston, R.C. & Young, M.B. Applications of the Eastman thermocell equation. I. Certain absolute ionic entropies and entropies of transfer of alkali metal and tetraalkylammonium bromides and halides. J. Am. Chem. Soc. 72, 4411-4418 (1950)

2268. Ikeda, T. Absolute value of the partial molar standard entropy of the hydrogen ion in aqueous solutions. J. Chem. Phys. 43, 3412-3413 (1965)

2269. Tyrrell, H.J.V. & Hollis, G.L. Thermal diffusion potentials in non-isothermal electrolytic systems. Trans. Faraday Soc. 45, 411-423 (1949)

2270. Eastman, E.D. Theory of the Soret effect. J. Am. Chem. Soc. 50, 283-291 (1928)

2271. Kirkwood, J.G. & Buff, F.P. The statistical mechanical theory of solutions. I. J. Chem. Phys. 19, 774-777 (1951)

2272. Chandler, D. & Andersen, H.C. Optimized cluster expansions for classical fluids. II. Theory of molecular liquids. J. Chem. Phys. 57, 1930-1937 (1972)

2273. Imai, T., Kinoshita, M. & Hirata, F. Theoretical study for partial molar volume of amino acids in aqueous solution: Implication of ideal fluctuation volume. J. Chem. Phys. 112, 9469-9478 (2000)

2274. Ohba, M., Kawaizumi, F. & Nomura, H. Effects of molecular conformation on the packing density in the liquid state. 3. Partial molar volume differences of cis and trans conformers at infinite dilution. J. Phys. Chem. 96, 5129-5133 (1992)

2275. King, E.J. Absolute partial molar ionic volumes. J. Phys. Chem. 74, 4590-4592 (1970)

2276. Zana, R. & Yeager, E. Ultrasonic vibration potentials in tetraalkylammonium halide solutions. J. Phys. Chem. 71, 4241-4244 (1967)

2277. Millero, F.J. Addendum to chapter 13. Compilation of the partial molal volumes of electrolytes at infinite dilution, V°, and the apparent molal volume concentration dependence constants, SV* and bV, at various temperatures. In: Water and aqueous solutions: Structure, thermodynamics, and transport processes. Horne, R.A., Ed. Wiley-Interscience, New York, USA, pp 565-595 (1972)

2278. Das, K. Single ionic partial molar volumes and solvation of ions. J. Solut. Chem. 18, 1085-1093 (1989)

2279. Tawa, G.J., Topol, I.A., Burt, S.K., Caldwell, R.A. & Rashin, A.A. Calculation of the aqueous solvation free energy of the proton. J. Chem. Phys. 109, 4852-4863 (1998)

2280. Pliego, J.R. & Riveros, J.M. Ab initio study of the hydroxide ion-water clusters: An accurate determination of the thermodynamic properties for the processes nH2O + OH- -> HO-(H2O)n (n = 1-4). J. Chem. Phys. 112, 4045-4052 (2000)

2281. Gurney, R.W. Ions in solution. University Press, Cambridge, UK (1936)

2282. Baldwin, R.L. How Hofmeister ion interactions affect protein stability. Biophys. J. 71, 2056-2063 (1996)

2283. Collins, K.D. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34, 300-311 (2004)

2284. Kunz, W., Henle, J. & Ninham, B.W. “Zur Lehre von der Wirkung der Salze” (about the science of the effect of salts): Franz Hofmeister's historical papers. Curr. Opin. Chem. Biol. 10, 658-663 (2004)

2285. Zhang, Y. & Cremer, P.S. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10, 658-663 (2006)

2286. Vlachy, N., Jagoda-Cwiklik, B., Vácha, R., Touraud, D., Jungwirth, P. & Kunz, W. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid. Interface Sci. 146, 42-47 (2008)

2287. Hofmeister, F. Zur Lehre von der Wirkung der Salze. Zweite Mittheilung. Ueber Regelmässigkeiten in der eiweissfällenden Wirkung der Salze und ihre Beziehung zum physiologischen Verhalten derselben. Arch. Exp. Pathol. Pharmakol. 24, 247-260 (1887)

2288. Hofmeister, F. Zur Lehre von der Wirkung der Salze. Dritte Mittheilung. Ueber die wasserentziehende Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 25, 1-30 (1888)

2289. Hofmeister, F. Zur Lehre von der Wirkung der Salze. Fünfte Mittheilung. Untersuchungen über den Quellungsvorgang. Arch. Exp. Pathol. Pharmakol. 27, 395-413 (1890)

2290. Hofmeister, F. Zur Lehre von der Wirkung der Salze. Sechste Mittheilung. Die Betheiligung gelöster Stoffe an Quellungsvorgängen. Arch. Exp. Pathol. Pharmakol. 28, 210-238 (1891)

2291. Lewith, S. Zur Lehre von der Wirkung der Salze. Erste Mittheilung. Das Verhalten der Eiweisskörper des Blutserums gegen Salze. Arch. Exp. Pathol. Pharmakol. 24, 1-16 (1887)

2292. Münzer, E. Zur Lehre von der Wirkung der Salze. Siebte Mittheilung. Die Allgemeinwirkung der Salze. Arch. Exp. Pathol. Pharmakol. 41, 71-96 (1898)

2293. dos Santos, A.P., Diehl, A. & Levin, Y. Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions. Langmuir 26, 10778-10783 (2010)

2294. v. Limbeck, R. Zur Lehre von der Wirkung der Salze. Vierte Mittheilung. Ueber die diuretische Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 25, 69-86 (1888)

2295. Omta, A.W., Kropman, M.F., Woutersen, S. & Bakker, H.J. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301, 347-349 (2003)

2296. Omta, A.W., Kropman, M.F., Woutersen, S. & Bakker, H.J. Influence of ions on the hydrogen-bond structure in liquid water. J. Chem. Phys. 119, 12457-12461 (2003)

2297. Kropman, M.F. & Bakker, H.J. Vibrational relaxation of liquid water in ionic solvation shells. Chem. Phys. Lett. 370, 741-746 (2003)

2298. Kropman, M.F. & Bakker, H.J. Effect of ions on the vibrational relaxation of liquid water. J. Am. Chem. Soc. 126, 9135-9141 (2004)

2299. Wachter, W., Kunz, W., Buchner, R. & Hefter, G. Is there an anionic Hofmeister effect on water dynamics? Dielectric spectroscopy of aqueous solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN. J. Phys. Chem. A 109, 8675-8683 (2005)

2300. Hart, E.J. & Boag, J.W. Absorption spectrum of the hydrated electron in water and in aqueous solutions. J. Am. Chem. Soc. 84, 4090-4095 (1962)

2301. Buxton, G.V., Greenstock, C.L., Helman, W.P. & Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-1 in aqueous solution). J. Phys. Chem. Ref. Data 17, 513-886 (1988)

2302. Larsen, R.E. Does the hydrated electron occupy a cavity? Science 329, 65-69 (2010)

2303. Schnitker, J. & Rossky, P.J. An electron-water pseudopotential for condensed phase simulation. J. Chem. Phys. 86, 3462-3470 (1987)

2304. Schnitker, J. & Rossky, P.J. Quantum simulation study of the hydrated electron. J. Chem. Phys. 86, 3471-3485 (1987)

2305. Rossky, P.J. & Schnitker, J. The hydrated electron: Quantum simulation of structure, spectroscopy, and dynamics. J. Phys. Chem. 92, 4277-4285 (1988)

2306. Larsen, R.E., Glover, W.J. & Schwartz, B.J. Comment on “An electron-water pseudopotential for condensed phase simulation” [J. Chem. Phys. 86, 3462 (1987)]. J. Chem. Phys. 131, 037101/1-037101/2 (2009)

2307. Schnitker, J. & Rossky, P.J. Response to “Comment on `An electron-water pseudopotential for condensed phase simulation' ” [J. Chem. Phys. 131, 037101 (2009)]. J. Chem. Phys. 131, 037102/1-037102/1 (2009)

2308. Tuttle Jr., T.R. & Golden, S. Solvated electrons: what is solvated? J. Phys. Chem. 95, 5725-5736 (1991)

2309. Sagar, D.M., Bain, C.D. & Verlet, J.R.R. Hydrated electrons at the water/air interface. J. Am. Chem. Soc. 132, 6917-6919 (2010)

2310. Riniker, S., Kunz, A.-P.E. & van Gunsteren, W.F. On the calculation of the dielectric permittivity and relaxation of molecular models in the liquid phase. J. Chem. Theory Comput. 7, 1469-1475 (2011)

2311. Rashin, A.A. & Bukatin, M.A. Calculation of hydration entropies of alkali and halide ions based on the continuum approach. J. Phys. Chem. 97, 1974-1979 (1993)

2312. Tolman, R.C. Consideration of the Gibbs theory of surface tension. J. Chem. Phys. 16, 758-774 (1948)

2313. Tolman, R.C. The superficial density of matter at a liquid-vapor boundary. J. Chem. Phys. 17, 118-127 (1949)

2314. Buff, F.P. & Kirkwood, J.G. Remarks on the surface tension of small droplets. J. Chem. Phys. 18, 991-992 (1950)

2315. Buff, F.P. The spherical interface. I. Thermodynamics. J. Chem. Phys. 19, 1591-1594 (1951)

2316. Buff, F.P. The spherical interface. II. Molecular theory. J. Chem. Phys. 23, 419-427 (1955)

2317. Kirkwood, J.G. & Buff, F.P. The statistical mechanical theory of surface tension. J. Chem. Phys. 17, 338-343 (1948)

2318. Kondo, S. Thermodynamical fundamental equation for spherical interface. J. Chem. Phys. 25, 662-669 (1956)

2319. Iwamatsu, M. The surface tension and Tolman's length of a drop. J. Phys. Condens. Mat. 6, L173-L177 (1994)

2320. Granasy, L. Semiempirical van der Waals/Cahn-Hilliard theory: Size dependence of the Tolman length. J. Chem. Phys. 109, 9660-9663 (1998)

2321. Koga, K., Zeng, X.C. & Shchekin, A.K. Validity of Tolman's equation: How large should a droplet be? J. Chem. Phys. 109, 4063-4070 (1998)

2322. Bykov, T.V. & Zeng, X.C. A patching model for surface tension and the Tolman length. J. Chem. Phys. 111, 3705-3713 (1999)

2323. Bykov, T.V. & Zeng, X.C. Statistical mechanics of surface tension and Tolman length of dipolar fluids. J. Phys. Chem. B 105, 11586-11594 (2001)

2324. Bartell, L.S. Tolman's delta, surface curvature, compressibility effects, and the free energy of drops. J. Phys. Chem. B 105, 11615-11618 (2001)

2325. Lei, Y.A., Bykov, T., Yoo, S. & Zeng, X.C. The Tolman length: Is it positive or negative? J. Am. Chem. Soc. 127, 15346-15347 (2005)

2326. Blokhuis, E.M. & Kuipers, J. Thermodynamic expressions for the Tolman length. J. Chem. Phys. 124, 074701/1-074701/8 (2006)

2327. Floris, F.M., Selmi, M., Tani, A. & Tomasi, J. Free energy and entropy for inserting cavities in water: Comparison of Monte Carlo simulation and scaled particle theory results. J. Chem. Phys. 107, 6353-6365 (1997)

2328. Marcus, Y. Ionic radii in aqueous solutions. Chem. Rev. 88, 1475-1498 (1988)

2329. Wertheim, M.S. Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments. J. Chem. Phys. 55, 4291-4298 (1971)

2330. Smith, P.E. & van Gunsteren, W.F. Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K. J. Chem. Phys. 100, 3169-3174 (1994)

2331. Placzek, G., Nijboer, B.R.A. & van Hove, L. Effect of short wavelength interference on neutron scattering by dense systems of heavy nuclei. Phys. Rev. 82, 392-403 (1951)

2332. Cichocki, B, Felderhof, B.U. & Hinsen, K. Electrostatic interactions in periodic Coulomb and dipolar systems. Phys. Rev. A 39, 5350-5358 (1989)

2333. Peter, C., van Gunsteren, W.F. & Hünenberger, P.H. Solving the Poisson equation for solute-solvent systems using fast Fourier transforms. J. Chem. Phys. 116, 7434-7451 (2002)

2334. Fukushima, N., Tamura, T. & Ohtaki, H. Dissolution of alkali fluoride and chloride crystals in water studied by molecular dynamics simulations. Z. Naturforsch. A 46, 193-202 (1991)

2335. Degrève, L. & da Silva, F.L.B. Structure of concentrated aqueous NaCl solution: A Monte Carlo study. J. Chem. Phys. 110, 3070-3078 (1999)

2336. Degrève, L. & da Silva, F.L.B. Large ionic clusters in concentrated aqueous NaCl solution. J. Chem. Phys. 111, 5150-5156 (1999)

2337. Koneshan, S. & Rasaiah, J.C. Computer simulation studies of aqueous sodium chloride solutions at 298 K and 683 K. J. Chem. Phys. 113, 8125-8137 (2000)

2338. Chitra, R. & Smith, P.E. Molecular association in solution: A Kirkwood-Buff analysis of sodium chloride, ammonium sulfate, guanidinium chloride, urea, and 2,2,2-trifluoroethanol in water. J. Phys. Chem. B 106, 1491-1500 (2002)

2339. Villa, A. & Mark, A.E. Calculation of the free energy of solvation for neutral analogues of amino acid side chains J. Comput. Chem. 23, 548-553 (2002)

2340. Kunz, W., Belloni, L., Bernard, O. & Ninham, B.W. Osmotic coefficients and surface tensions of aqueous electrolyte solutions: Role of dispersion forces. J. Phys. Chem. B 108, 2398-2404 (2004)

2341. Yang, Y., Meng, S. & Wang, E.G. A molecular dynamics study of hydration and dissolution of NaCl nanocrystal in liquid water. J. Phys. Condens. Matter 18, 10165-10177 (2006)

2342. Sanz, E. & Vega, C. Solubility of KF and NaCl in water by molecular simulation. J. Chem. Phys. 126, 014507/1-014507/13 (2007)

2343. Gu, B., Zhang, F.S., Wang, Z.P. & Zhou, H.Y. The solvation of NaCl in model water with different hydrogen bond strength. J. Chem. Phys. 129, 184505/1-184505/7 (2008)

2344. Gu, B., Zhang, F.S., Wang, Z.P. & Zhou, H.Y. The non-ideal solvation of NaCl in solvent: a simulation study. Mol. Phys. 106, 1047-1054 (2008)

2345. del Popolo, M.G., Kohanoff, J., Lynden-Bell, R.M. & Pinilla, C. Clusters, liquids, and crystals of dialkyimidazolium salts. A combined perspective from ab initio and classical computer simulations. Acc. Chem. Res. 40, 1156-1164 (2007)

2346. Lantelme, F., Turq, P., Quentrec, B. & Lewis, J.W.E. Application of the molecular dynamics method to a liquid system with long range forces (Molten NaCl). Mol. Phys. 28, 1537-1549 (1974)

2347. Lewis, J.W.E., Singer, K. & Woodcock, L.V. Thermodynamic and structural properties of liquid ionic salts obtained by Monte Carlo computation. J. Chem. Soc. Farad. Trans. II 71, 301-312 (1975)

2348. Amini, M., Fincham, D. & Hockney, R.W. Molecular dynamics study of the melting of alkali halide crystals. J. Phys. C 12, 4707-4720 (1979)

2349. Baranyai, A., Ruff, I. & McGreevy, R.L. Monte Carlo simulation of the complete set of molten alkali halides. J. Phys. C 19, 453-465 (1986)

2350. Tissen, J.T.W.M. & Janssen, G.J.M. Molecular dynamics simulation of molten alkali carbonates. Mol. Phys. 71, 413-426 (1990)

2351. Tissen, J.T.W.M., Janssen, G.J.M. & van der Eerden, J.P. Molecular dynamics simulation of binary mixtures of molten alkali carbonates. Mol. Phys. 82, 101-111 (1994)

2352. Guissani, Y. & Guillot, B. Coexisting phases and criticality in NaCl by computer simulation. J. Chem. Phys. 101, 490-509 (1994)

2353. Ciccotti, G., Jacucci, G. & McDonald, I.R. Transport properties of molten alkali halides. Phys. Rev. A 13, 426-436 (1976)

2354. Okazaki, S., Ohtori, N. & Okada, I. Molecular dynamics studies on molten alkali hydroxides. 2. Rotational and translational motions of ions in molten LiOH. J. Chem. Phys. 93, 5954-5960 (1990)

2355. Okazaki, S., Ohtori, N. & Okada, I. Molecular dynamics studies on molten alkali hydroxides. 1. Static properties of molten LiOH. J. Chem. Phys. 92, 7505-7514 (1990)

2356. Vohringer, G. & Richter, J. Molecular dynamics simulations of molten alkali nitrates. Z. Naturforsch. A 56, 337-341 (2001)

2357. Galamba, N., de Castro, C.A.N & Ely, J.F. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations. J. Chem. Phys. 120, 8676-8692 (2004)

2358. Galamba, N., de Castro, C.A.N & Ely, J.F. Molecular dynamics simulation of the shear viscosity of molten alkali halides. J. Phys. Chem. B 108, 3658-3662 (2004)

2359. Galamba, N., de Castro, C.A.N & Ely, J.F. Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations. J. Chem. Phys. 122, 224501/1-224501/9 (2005)

2360. Galamba, N., de Castro, C.A.N & Ely, J.F. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides. J. Chem. Phys. 126, 204511/1-204511/10 (2007)

2361. Galamba, N. & Costa Cabral, B.J. First principles molecular dynamics of molten NaCl. J. Chem. Phys. 126, 124504/1-124504/8 (2007)

2362. Rodrigues, P.C.R. & Fernandes, F.M.S.S. Phase diagrams of alkali halides using two interaction models: A molecular dynamics and free energy study. J. Chem. Phys. 126, 024503/1-024503/10 (2007)

2363. Jacucci, G., Klein, M.L. & McDonald, I.R. Molecular-dynamics study of lattice-vibrations of sodium-chloride. J. Phys. Lett. (Paris) 36, L97-L100 (1975)

2364. Michielsen, J., Woerlee, P., Graaf, F.V.D. & Ketelaar, J.A.A. Pair potential for alkali metal halides with rock salt crystal structure. J. Chem. Soc. Farad. Trans. II 71, 1730-1741 (1975)

2365. Rodrigues, P.C.R. & Fernandes, F.M.S.S. Molecular dynamics of phase transitions in clusters of alkali halides. Int. J. Quant. Chem. 84, 169-180 (2001)

2366. Brunsteiner, M. & Price, S.L. Surface structure of a complex inorganic crystal in aqueous solution from classical molecular simulation. J. Phys. Chem. B 108, 12537-12546 (2004)

2367. Lim, I.S., Laerdahl, J.K. & Schwerdtfeger, P. Fully relativistic coupled-cluster static dipole polarizabilities of the positively charged alkali ions from Li+ to 119+. J. Chem. Phys. 116, 172-178 (2002)

2368. Pyper, N.C., Pike, C.G. & Edwards, P.P. The polarizabilities of species present in ionic-solutions. Mol. Phys. 76, 353-372 (1992)

2369. Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847-12865 (1997)

2370. Warshel, A., Kato, M. & Pisliakov, A.V. Polarizable force fields: History, test cases, and prospects. J. Chem. Theory Comput. 3, 2034-2045 (2007)

2371. Guillot, B. A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 101, 219-260 (2002)

2372. Thole, B.T. Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59, 341-350 (1981)

2373. Baranyai, A. & Bartok, A. Classical interaction model for the water molecule. J. Chem. Phys. 126, 184508/1-184508/7 (2007)

2374. Dang, L.X. Solvation of ammonium ion. A molecular dynamics simulation with nonadditive potentials. Chem. Phys. Lett. 213, 541-546 (1993)

2375. Dang, L.X. & Smith, D.E. Molecular dynamics simulations of aqueous ionic clusters using polarizable water. J. Chem. Phys. 99, 6950-6956 (1993)

2376. Caleman, C. & van der Spoel, D. Evaporation from water clusters containing singly charged ions. Phys. Chem. Chem. Phys. 9, 5105-5111 (2007)

2377. Miller, Y., Thomas, J.L., Kemp, D.D., Finlayson-Pitts, B.J., Gordon, M.S., Tobias, D.J. & Gerber, R.B. Structure of large nitrate-water clusters at ambient temperatures: Simulations with effective fragment potentials and force fields with implications for atmospheric chemistry. J. Phys. Chem. A 113, 12805-12814 (2009)

2378. Wick, C.D. & Xantheas, S.S. Computational investigation of the first solvation shell structure of interfacial and bulk aqueous chloride and iodide ions. J. Phys. Chem. B 113, 4141-4146 (2009)

2379. Babu, C.S. & Lim, C. Empirical force fields for biologically active divalent metal cations in water. J. Phys. Chem. A 110, 691-699 (2006)

2380. Wheatley, R.J. The solvation of sodium ions in water clusters: intermolecular potentials for Na+-H2O and H2O-H2O. Mol. Phys. 87, 1083-1116 (1996)

2381. dos Santos, D.J.V.A., Müller-Plathe, F. & Weiss, V. Consistency of ion adsorption and excess surface tension in molecular dynamics simulations of aqueous solutions. J. Phys. Chem. 112, 19431-19442 (2008)

2382. Rogers, D.M. & Beck, T.L. Quasichemical and structural analysis of polarizable anion hydration. J. Chem. Phys. 132, 014505/1-014505/12 (2010)

2383. Wick, C.D., Kuo, I.-F.W., Mundy, C.J. & Dang, L.X. The effect of polarizability for understanding the molecular structure of aqueous interfaces. J. Chem. Theory Comput. 3, 2002-2010 (2007)

2384. Roux, B. Non-additivity in cation-peptide interactions. A molecular dynamics and ab initio study of Na+ in the gramicidin channel. Chem. Phys. Lett. 212, 231-240 (1993)

2385. Allen, T.W., Andersen, O.S. & Roux, B. Ion permeation through a narrow channel: Using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields. Biophys. J. 90, 3447-3468 (2006)

2386. Baker, C.M., Lopes, P.E.M., Zhu, X., Roux, B. & McKerell, A.D. Accurate calculation of hydration free energies using pair-specific Lennard-Jones parameters in the CHARMM Drude polarizable force field. J. Chem. Theory Comput. 6, 1181-1198 (2010)

2387. Hansen, H.S. & Hünenberger, P.H. A reoptimized GROMOS force field for hexopyranose-based carbohydratesaccounting for the relative free energies of ring conformers, anomers,epimers, hydroxymethyl rotamers and glycosidic linkage conformers. J. Comput. Chem. 32, 998-1032 (2011)

2388. Li, G., Zhang, X. & Cui, Q. Free energy perturbation calculations with combined QM/MM potentials. Complications, simplifications, and applications to redox potential calculations. J. Phys. Chem. B 107, 8643-8653 (2003)

2389. Kamerlin, S.C.L., Haranczyk, M. & Warshel, A. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: Accelerated QM/MM studies of pK, redox reactions and solvation free energies. J. Phys. Chem. B 113, 1253-1272 (2009)

2390. Zeng, X., Hu, H., Hu, X. & Yang, W. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method. J. Chem. Phys. 130, 164111/1-164111/8 (2009)

2391. Asthagiri, D., Pratt, L.R. & Ashbaugh, H.S. Absolute hydration free energies of ions, ion-water clusters and quasichemical theory. J. Chem. Phys. 119, 2702-2708 (2003)

2392. Rempe, S.B., Asthagiri, D. & Pratt, L.R. Inner shell definition and absolute hydration free energy of K+(aq) on the basis of quasi-chemical theory and ab initio molecular dynamics. Phys. Chem. Chem. Phys. 6, 1966-1969 (2004)

2393. Asthagiri, D., Pratt, L.R. & Kress, J.D. Ab initio molecular dynamics and quasichemical study of H+(aq). Proc. Natl. Acad. Sci. USA 102, 6704-7608 (2005)

2394. Pliego, J.R. & Riveros, J.M. The cluster-continuum model for the calculation of the solvation free energy of ionic species. J. Phys. Chem. A 105, 7241-7247 (2001)

2395. Topol, I.A., Tawa, G.J., Burt, S.K. & Rashin, A.A. On the structure and thermodynamics of solvated monoatomic ions using a hybrid solvation model. J. Chem. Phys. 111, 10998-11014 (1999)

2396. Mejías. J.A., Lago, Calculation of the absolute hydration enthalpy and free energy of H+ and OH-. J. Chem. Phys. 113, 7306-7316 (2000)

2397. Zhan, C.-G. & Dixon, D.A. First-principles determination of the absolute hydration free energy of the hydroxide ion. J. Phys. Chem. A 106, 9737-9744 (2002)

2398. Zhan, C.-G. & Dixon, D.A. Hydration of the fluoride anion: Structures and absolute hydration free energy from first-principles electronic structure calculations. J. Phys. Chem. A 108, 2020-2029 (2004)

2399. Rosta, E., Haranczyk, M., Chu, Z.T. & Warshel, A. Accelerating QM/MM free energy calculations: Representing the surroundings by an updated mean charge distribution. J. Phys. Chem. B 112, 5680-5692 (2008)

2400. Min, D., Zheng, L., Harris, W., Chen, M., Lv, C. & Yang, W. Practically efficient QM/MM alchemical free energy simulations: The orthogonal space random walk strategy. J. Chem. Theory Comput. 6, 2253-2266 (2010)

2401. Chen, E.S. & Chen, E.C.M. Comment on “Ab initio molecular dynamics calculation of ion hydration free energies” [J. Chem. Phys. 130, 204507 (2010)]. J. Chem. Phys. 133, 047103/1-047103/2 (2010)

2402. Sulpizi, M. & Sprik, M. Acidity constants from DFT-based molecular dynamics simulations. J. Phys.: Condens. Matter 22, 284116/1-284116/8 (2010)

2403. Cheng, J., Sulpizi, M. & Sprik, M. Redox potentials and pKa for benzoquinone from density functional theory based molecular dynamics. J. Chem. Phys. 131, 154504/1-154504/20 (2009)

2404. Blumberger, J. & Sprik, M. Redox free energies from vertical energy gaps: Ab initio molecular dynamics implementation. Lect. Notes Phys. 704, 481-506 (2006)

2405. Oberhofer, H. & Blumberger, J. Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions. J. Chem. Phys. 131, 06401/1-06401/11 (2009)

2406. Costanzo, F., Sulpizi, M., Della Valle, R.G. & Sprik, M. First principles study of alkali-tyrosine complexes: Alkali solvation and redox properties. Phys. Chem. Chem. Phys. 4, 1049-1056 (2008)

JavaScript has been disabled in your browser