Figures

A pdf version of this list can also be found Downloadhere (PDF, 29 KB).

2.2   Hypothetical processes defining the real solvation free energy of an ion. (p.19)
2.3
  Experimentally-elusive quantities required for the evaluation of intrinsic single-ion solvation free
        energies. (p.32)
2.4
  Fundamental experimental problems in the determination of thermodynamic parameters for
        processes involving ions. (p.34)
3.1
  Four basic choices defining a molecular model. (p.41)
3.2
   Three main types of theoretical models applicable to the evaluation of single-ion solvation free
        energies, as well as derivative thermodynamic solvation parameters. (p.43)
3.3
   Types of boundary conditions and electrostatic schemes commonly employed in classical
        atomistic simulations. (p.69)
3.4
   Common types of non-polarizable water models used in atomistic simulations. (p.81)
3.5
   Intrinsic electric potential at the center of an uncharged cavity within a pure liquid recalculated
        using P- or M-summation. (p.113)
3.6
   External or internal intrinsic bulk electric potentials calculated based on a spherical region using
        P- or M-averaging. (p.118)
3.7
   Air-liquid interfacial potential of a planar slab of a pure liquid calculated using P- or
        M-integration. (p.123)
3.8
   Solvent structuring and polarization around an ion as obtained from atomistic
        simulations. (p.132)
4.1
   Thermodynamic reactions relevant to ionic solvation. (p.197)
4.2
   Thermodynamic cycles relevant to ionic solvation. (p.200)
4.3
   Schematic illustrations regarding the properties of a system of phases at equilibrium. (p.216)
4.4
   Schematic classification of different types of phases in terms of their (di)electric
        properties. (p.225)
4.5
   Results of illustrative two-dimensional electrostatics calculations involving square or rectangular
        conductors surrounded by vacuum. (p.240)
4.6
   Results of illustrative two-dimensional electrostatics calculations involving square or rectangular
        conductors surrounded by vacuum. (p.242)
4.7
   Results of illustrative two-dimensional electrostatics calculations involving square conductors
        surrounded by vacuum. (p.244)
4.8
   Definitions of the lateral and frontal Volta and surface potentials and potential differences
        for conducting phases. (p.249)
4.9
   Definition of the standard vacuum, real and intrinsic absolute potentials of an electrode. (p.265)
4.10
 Illustration of the connection between real and intrinsic absolute electrode potentials and
        corresponding real and intrinsic single-ion solvation free energies. (p.271)
4.11
 Potentials in a hypothetical fluid of hard spheres bearing isotropic quadrupole charge
         distributions. (p.278)
4.12
 External and internal Galvani potentials within a spherical sample of non-polarizable
         liquid argon. (p.280)
4.13
 Analogs of the SPC water model with altered charge distributions. (p.287)
4.14
 Schematic representation of an electrochemical equilibrium measurement. (p.291)
4.15
 Example of a Galvanic cell. (p.295)
4.16
 Schematic representation of Voltaic cell measurements. (p.301)
4.17
 Practical implementation of the Kenrick cell. (p.304)
4.18
 Summary of the relationships connecting key quantities related to single-ion solvation. (p.321)
5.1
   Available sets of effective ionic radii for the alkali and halide ions. (p.339)
5.2
   Standard electrode (redox) potentials and first isothermal temperature derivatives for the
        alkali and halide element-ion couples in water, along with contributions of more fundamental
        thermodynamic parameters to these quantities. (p.348)
5.3
   Standard thermodynamic parameters of dissolution for the alkali-halide salts in water. (p.362)
5.4
   Available estimates for the real absolute potential V^H,watɵ of the reference hydrogen
        electrode in water. (p.404)
5.5
   Available estimates for the real single-ion solvation free energy G^H,watɵ of the proton
        in water. (p.409)
5.6
   Available estimates for the standard air-liquid interfacial potential χwatɵ of water. (p.435)
5.7
   Estimates for the standard intrinsic hydration parameters of the proton and
        intrinsic partial molar variables of the aqueous proton. (p.461)
5.8
   Recommended data for the single-ion intrinsic hydration parameters of the gas-phase proton
        and alkali and halide ions, and the single-ion intrinsic partial molar variables
        of the aqueous proton and alkali and halide ions. (p.479)
6.1
   Correction terms to raw ionic solvation free energies calculated using
        atomistic simulations. (p.499)
6.2
   Illustration of the ion sizes corresponding to the three optimized ion-water Lennard-Jones
        interaction parameter sets. (p.521)
6.3
   Properties that could in principle be used for the (in)validation of a specific ion-water
        (and ion-ion) Lennard-Jones interaction parameter set. (p.524)
6.5
   Thermodynamic cycles involved in the quantum-mechanical calculation of single-ion
        solvation free energies using quasi-chemical theory. (p.533)

JavaScript has been disabled in your browser